
handbook
re

Users Manual
Operators Manual
Developers Manual

USERS MANUAL

I Users manual 2

1 Preface 3

2 Getting started 5
2.1 Requirements . 5
2.2 Installing the Python client . 6
2.3 Logging in . 7
2.4 Using the CLI . 8

3 Architecture Introduction 10
3.1 REDAC internals . 10
3.2 The system matrix . 10
3.3 Available compuing elements . 12

4 Example Applications 13

5 Further reading 16

6 Anabrid Operations 17
6.1 List of provided services . 17
6.2 User account creation . 18
6.3 Profile user data policy . 19

II Operators manual 20

7 Introduction 21
7.1 Intended Audience . 21
7.2 Confidential Credentials given at system handover 21
7.3 Public Information on your REDAC installation . 22

8 Physical Setup 23
8.1 Spatial requirements . 23
8.2 Safety Instructions for Physical Handling of the Device 24
8.3 On-Device Indentifier Tags . 24
8.4 Moving . 25
8.5 Device Disposal . 25

9 Powering the system 27
9.1 System Startup . 27

i

9.2 System Shutdown . 29

10 Internal network 30
10.1 Initial network setup/access . 31
10.2 The Mikrotik Router . 32
10.3 The Super Controller Server . 35
10.4 How user access works from outside . 37

11 Services 40
11.1 Relevant systemd units . 40
11.2 Docker service overview . 41
11.3 How to (re-)install the relevant software on the server 42

12 Authentification 43
12.1 Scope and capablities of Keycloak on REDAC . 43
12.2 REDAC Keycloak clients . 44

III Developers manual 45

13 Introduction 46

14 Architecture Reference 47
14.1 REDAC Hierarchy . 47
14.2 Block reference . 51
14.3 Digital Network . 52

15 Software 53
15.1 Client Computers . 53
15.2 Software on the SuperController . 54
15.3 Firmware on Microcontrollers . 55

16 Usage modes 56
16.1 Queue access . 56
16.2 Immediate SuperController access . 57
16.3 Immediate Microcontroller access . 57
16.4 JupyterHub/Browser access . 57

17 Hardware 58

18 Appendix 59
18.1 On the REDAC handbook . 59
18.2 List of Abbreviations . 59
18.3 Glossary . 63
18.4 European Union CE/RoHS Conformity Declaration . 69

Bibliography 70

Index 71

ii

REDAC Manual, Release v1.0-NN-g6a89d8f

This is the official manual for the Reconfigurable Discrete Analog Computer, in short REDAC
(https://redac.anabrid.com), made by anabrid GmbH (https://anabrid.com).

You can find a printable PDF version of this manual at https://redac.anabrid.com/manual.pdf and a
browser friendly online version at https://anabrid.dev/docs/redac-manual/dirhtml/

Version of this document
v1.0-NN-g6a89d8f (for details see section Section 18.1.1)

Build time
Feb 19, 2025

Authors
anabrid GmbH, Am Stadtpark 3, 12167 Berlin, Germany

Copyright
© 2025 anabrid GmbH and DLR e.V., Patents pending

How to read the manual: As a regular user, you only need the User manual. If you are a system ad-
ministrator/operator, you should furthermore read the Operators manual. For software and hardware
developers, the Developers manual is of most interest. All manual parts should be read in order, i.e.
always consider the user manual first and the developer manual last.

� Tip

You can read the latest version of this document online at
https://redac.anabrid.com/manual.pdf

USERS MANUAL 1

https://redac.anabrid.com
https://anabrid.com
https://redac.anabrid.com/manual.pdf
https://anabrid.dev/docs/redac-manual/dirhtml/
https://redac.anabrid.com/manual.pdf

Part I

Users manual

2

CHAPTER

ONE

PREFACE

Analog computers differ substantially from current digital computers in that they do not work by ex-
ecuting an algorithm in a step-by-step fashion. Instead they consist of a number of computing ele-
ments, each capable of performing a certain mathematical operation such as summation, multiplica-
tion or time-integration. A program for an analog computer describes how these computing elements
are to be connected in order to create a model (an analogue) of the problem to be solved.

A (very) simple problem like computing 𝑎(𝑏+ 𝑐) could be implemented on a classic digital computer
as shown in this exemplary assembler listing:

LOAD A, R0
LOAD B, R1
LOAD C, R2
ADD R1, R2, R1
MULT R0, R1, R0
STORE R0, ...

This straightforward algorithm requires six individual steps to compute the desired result. Contrast
this with the analog computer program shown in figure Fig. 1.1. This setup requires just two comput-
ing elements, one summer and one multiplier. The summer is fed with the values 𝑏 and 𝑐 while the
multiplier is connected to the output of this summer and to the value 𝑎.

Fig. 1.1: Analog computer setup for solving 𝑥 = 𝑎(𝑏+ 𝑐)

Typically, values are represented by voltages or currents in an analog computer so that only a single
connection is necessary between computing elements.

The advantages of this analog computing approach are manyfold. Most notable are the extremely
high degree of parallelism (there are no central memory, no data dependencies, no synchronisation
points, etc., so that the computing elements work in full parallelism), the resulting high speed of
computation and the inherent very high energy efficiency of analog computing.

While a digital computer can basically solve every problem given enough time and memory, an ana-
log computer setup needs as many computing elements as there are operations in the governing
equations of the problem to be solved. A little bit more mathematically, one can say that the size of
a digital computer is constant while its time to solution typically grow much faster than just linearly

3

REDAC Manual, Release v1.0-NN-g6a89d8f

with the size of the problem (making many problems basically intractable on classic digital comput-
ers). The size of the analog computer on the other hand grows linearly with the problem size but, and
this cannot be overestimated, the time to solution remains constant.

Classic analog computers were impressive systems, typically featuring a large patchpanel with thou-
sands of jacks, all connected to a vast number of computing elements, such as integrators, summers,
coefficient potentiometers, multipliers, etc. Programming these machines was as much of an art as
a science and was quite time consuming due to the hundreds or even thousands of connections that
had to be made manually. ([ulmannAP2] describes the history of analog computing in great detail.)

Nowadays, the patchpanel is a museum piece and the actual connection of the computing elements
is done electronically, under the control of an attached digital computer; this greatly simplifies the
programming. Using appropriate libraries as shown below, the analog computer can be used as a
mathematical machine without having to understand the underlying electronic implementation in
detail.

Since the basics of analog computer programming are outside the scope of this user guide, please
refer to [ulmannAP2] for detailed information on the subject or consult the section Section 5.

4

CHAPTER

TWO

GETTING STARTED

REDAC is a fully software-reconfigurable analog-digital hybrid computer made by Anabrid
(https://anabrid.com). The computer is intended to be used for datacenters, research and industry. It
is specifically designed for solving differential equations, simulating complex models, and forecast-
ing dynamic systems with exceptional speed and throughput—all while operating with minimal or no
cooling requirements.

This system excels in a wide range of demanding applications, including realistic simulations of tur-
bulent fluid dynamics, structural and flight dynamics, control systems, route optimization, big data
analytics, real-time sensor processing, and much more.

REDAC is built on a groundbreaking analog dataflow architecture that delivers unparalleled perfor-
mance, achieving at least 1,000 times the speed of traditional computing systems while consuming
10,000 times less power. It comes fully integrated with a comprehensive suite of software tools from
Anabrid, including a powerful compiler, bindings for popular programming languages and libraries,
and robust cloud system administration features.

REDAC is one of the first commercially available modern analog-digital hybrid computers and allows
to solve up to about one thousand coupled differential equations (DEQs) of 1st order or five hundred
DEQs 2nd order, etc. Thanks to analog multipliers, non-linear equations can also be easily imple-
mented.

The REDAC system contains a complex hierarchy of analog elements and digital processors (see Ar-
chitecture Reference). Despite other modes of operation exist, this makes it very convenient to use
the system as a remote user via the internet.

2.1 Requirements

REDAC is a modern analog-digital hybrid computer primarily meant to be used in a datacenter or
“cloud” context. That means you will access it similar to cloud computing services from Google or
Amazon, straight from your computer over the internet. This reduces the demand on your local com-
puter to a bare minimum. In fact, this guide promotes our python reference client implementation
which has little dependencies and will run on virtually any modern operating system.

Therefore, as a regular user of REDAC, this is the requirement list:

• A notebook or desktop computer with internet access or at least some sort of direct/company
network access to REDAC. Most likely your operator provides you access to REDAC over conven-
tional IPv4 TCP/IP networking.

• The operating systems Apple Mac OS X (macOS 10.9 Mavericks or later), Microsoft Windows
(Windows 7 or later) or GNU/Linux are supported. Administrator rights are typically not re-
quired.

5

https://anabrid.com

REDAC Manual, Release v1.0-NN-g6a89d8f

• At least Python 3.10 is required for the reference client software.

• As access is limited and precious, you first need to get a user account. Depending on the struc-
ture of your organization, you will be able to apply/register on a website or you have to manually
contact the operators to have them creating a user account for you.

Please note that the REDAC’s software may be operated in different states (see reconfigurable) which
virtualizes the device such that multiple users may operate on _partitions_ of the device indepen-
dently and in parallel. The mode is set by the operator and may be queried using the provided CLI
tool (see below).

2.2 Installing the Python client

The REDAC programming interface can be used from a variety of programming languages. How-
ever, we first and foremost support the python scientific programming ecosystem, consisting of
a standard set of tools such as Scipy (https://scipy.org/) and its components such as Numpy
(https://numpy.org/).

In order to proceed with REDAC, you need the python client available at your computer. If you prefer,
you can also choose some hosted Jupyter Notebook environment such as Google Colab or Binder (or
the hosted one by Anabrid, see List of provided services). The python client very little dependencies.
Virtually any computer running a modern python version should do it. You can run the client even on
a Raspberry Pi if you prefer.

The software package anabrid-redac-client (https://pypi.org/project/anabrid-redac-client/) is re-
leased on public python package index (in short pip). In order to install it, you need the python-pip
or pip command available on your computer. Installation is then as easy as typing

pip install anabrid-redac-client

from a regular python installation, i.e. a system shell with a working python and
pip executable on the PATH. It is suggested to run this within a Virtual Environment
(https://virtualenv.pypa.io/en/latest/user_guide.html). It is generally not suggested to install
this system-wide with sudo.

A typical terminal session during installation looks like this:

you@yournotebook $ python -m venv venv
you@yournotebook $ source venv/bin/activate
(venv) you@yournotebook $ pip install anabrid-redac-client
Collecting anabrid-redac-client
Downloading anabrid_redac_client-0.1.0-py3-none-any.whl.metadata (892 bytes)

[...]
Installing collected packages: urllib3, typing-extensions, termcolor, six,␣
→˓shellingham, setuptools, python-dotenv, pygments, propcache, multidict, mdurl,␣
→˓lucipy, idna, frozenlist, click, charset-normalizer, certifi, attrs, annotated-
→˓types, aiohappyeyeballs, yaspin, yarl, requests, python-dateutil, pydantic-core,
→˓ markdown-it-py, aiosignal, rich, pydantic, aiohttp, typer, anabrid-redac-core,␣
→˓anabrid-redac-client
Successfully installed aiohappyeyeballs-2.4.6 aiohttp-3.11.12 aiosignal-1.3.2␣
→˓anabrid-redac-client-0.1.0 anabrid-redac-core-0.1.0 annotated-types-0.7.0 attrs-
→˓25.1.0 certifi-2025.1.31 charset-normalizer-3.4.1 click-8.1.8 frozenlist-1.5.0␣
→˓idna-3.10 lucipy-1.6.0 markdown-it-py-3.0.0 mdurl-0.1.2 multidict-6.1.0␣

(continues on next page)

2.2. Installing the Python client 6

https://scipy.org/
https://numpy.org/
https://pypi.org/project/anabrid-redac-client/
https://virtualenv.pypa.io/en/latest/user_guide.html

REDAC Manual, Release v1.0-NN-g6a89d8f

(continued from previous page)
→˓propcache-0.2.1 pydantic-2.10.6 pydantic-core-2.27.2 pygments-2.19.1 python-
→˓dateutil-2.9.0.post0 python-dotenv-1.0.1 requests-2.32.3 rich-13.9.4 setuptools-
→˓75.8.0 shellingham-1.5.4 six-1.17.0 termcolor-2.3.0 typer-0.15.1 typing-
→˓extensions-4.12.2 urllib3-2.3.0 yarl-1.18.3 yaspin-3.1.0

[notice] A new release of pip is available: 24.2 -> 25.0.1
[notice] To update, run: pip install --upgrade pip

After successful installation, you should have the exectuable redacli available. Call redacli --help
to test it:

(venv) you@yournotebook $ redacli --help

Usage: redacli [OPTIONS] COMMAND [ARGS]...

+---------------------------- Options ----------------------------+
| --install-completion Install completion for the current shell |
| --show-completion Show completion for the current shell, |
| to copy it or customize the installation |
| --help Show this message and exit |
+---+

+---------------------------- Commands ---------------------------+
| run submit logs status results partitions health |
+---+

If you system cannot find the executable, you most likely did not work within a virtual environment
and do not have the python default binary path as part of your PATH variable. On UNIX-like systems,
this goes typially into~/.local/bin, for instance you can typeexport PATH="$PATH:$HOME/.local/
bin" to enable this location. You can also check the output of python -m site --user-site to find
out where your python installation currently installs packages to.

2.3 Logging in

This first access happens in your webbrowser. Visit the website https://redac.anabrid.com and hit the
log in button in the upper right. You should be then provided a page where you can register a user
account or login with your useraccount. In order to connect to REDAC from the client, you currently
have to store your username and password as environment variables. You can do this, for instance,
by typing

you@yournotebook $ export REDAC_USERNAME="your-name@example.com"
you@yournotebook $ export REDAC_PASSWORD="yourHopefullyComplicatedPasswordGoesHere
→˓"

When connecting, you also might need a hostname. This is, in the moment, just https://redac.
anabrid.com and this option is already configured as the default and can be omitted.

ò Note

For further details about the registration procedure for the REDAC computer operated for DLR by

2.3. Logging in 7

https://redac.anabrid.com

REDAC Manual, Release v1.0-NN-g6a89d8f

anabrid, contact your local system administrator or see Anabrid Operations. For technical infor-
mation about the authentification procedure, see also Authentification in the operators manual.

2.4 Using the CLI

The REDAC may be operated in a partitioned setup where multiple parts of the system are isolated
against each other through the software stack. For each of these partitions, there is a seperate job
queue which contains jobs for this partition. Jobs in these queues may be submitted by diffeent users
and each job is identified through an unique ID. Currently, there are two options to access the system:

1. Through the Python class REDACClient as demonstrated in Example Applications.

2. Through the CLI executable redacli.

This section covers the latter. Please first login to the system according to the instructions above.
Given a netlist with filename config.json, one run of the netlist with default parameters on partition
PART is submitted by

you@yournotebook $ redacli --host https://redac.anabrid.com --partition PART␣
→˓config.json

Note that https://redac.anabrid.com is the current default and thus may be omitted. The client
then continues to update the status until the job has been completed (with either the results or an
error):

>>> redacli run test/data/config.json
○ Job submitted with ID: 56bcc72f-aaa8-4c04-96f6-4eb6425372f6
○ Job 56bcc72f-aaa8-4c04-96f6-4eb6425372f6 completed with status: COMPLETED

In this example, we submitted a job that is saved under its ID
56bcc72f-aaa8-4c04-96f6-4eb6425372f6. With this ID, we can subsequently retrieve the re-
sults:

>>> redacli results 56bcc72f-aaa8-4c04-96f6-4eb6425372f6
{
"/0/0": [(omitted)],
"/1/0": [(omitted)]

}

Note that each item of the results contains data for one adc_channel from the netlist, by the scheme
/carrier/adc_channel, where both carrier and adc_channels are indexed starting with 0. Further-
more, we may download the job’s log using the logs command:

>>> redacli logs 56bcc72f-aaa8-4c04-96f6-4eb6425372f6
[/forwarder/0/56bcc72f-aaa8-4c04-96f6-4eb6425372f6] 2025-02-16 20:51:39: Starting␣
→˓task processing...
[/forwarder/0/56bcc72f-aaa8-4c04-96f6-4eb6425372f6] 2025-02-16 20:51:40: New run␣
→˓state: JobSequenceEnum.RECEIVED_SET_CIRCUIT
[/forwarder/0/56bcc72f-aaa8-4c04-96f6-4eb6425372f6] 2025-02-16 20:51:40: New run␣
→˓state: JobSequenceEnum.RECEIVED_STATUS_TAKE_OFF
[/forwarder/0/56bcc72f-aaa8-4c04-96f6-4eb6425372f6] 2025-02-16 20:51:40: New run␣

(continues on next page)

2.4. Using the CLI 8

REDAC Manual, Release v1.0-NN-g6a89d8f

(continued from previous page)
→˓state: JobSequenceEnum.RECEIVED_STATUS_DONE
[/forwarder/0/56bcc72f-aaa8-4c04-96f6-4eb6425372f6] 2025-02-16 20:51:40: Finished␣
→˓processing (reason: TASK_FINISH)

These logs are fairly specific to the structure of the software stck, but may serve as the first indicator
when dealing with issues in the software stack.

Last but not least, redacli enables users to receive information about the system, namely the parti-
tioning scheme:

>>> redacli partitions
Partition 0

- Job queue length: 1
- Carriers:
- 00-00-00-00-00-00

Partition 1
- Job queue length: 2
- Carriers:
- 00-00-00-00-00-01

showing the carriers (mREDACs) per partition and the number of jobs waiting for processing in each
queue as well as the temperatures in the system:

>>> redacli health

which prints a list of individual components in the system as well as their temperatures.

2.4. Using the CLI 9

CHAPTER

THREE

ARCHITECTURE INTRODUCTION

Classic analog computers typically featured a large central patch panel consisting of thousands of
sockets by means of which computing elements were connected with each other using patch cables.
This was very cumbersome, took a long time to manually program, was error prone, and did not
allow for rapid program changes. Fortunately with the REDAC system these patch panels are finally
relegated to museums where they belong.

This section provides a brief overview about the architecture of the Reconfigurable Discrete Analog
Computer, in short REDAC. For a more extensive documentation, see Architecture Reference in the
developers manual.

3.1 REDAC internals

REDAC is a complex system consisting of a plethora of inner, “nested” subsystems. At the lowest lev-
els, these systems are either digital or analog, rendering the overall system as a hybrid computer. The
vast majority of electronics in REDAC is analog compute circuitery and analog interconnection net-
works, the digital parts are in fact only a tiny fraction of administrative control structures, realized in
heterogenous computer architectures (both embedded, digital switching network and server grade
processors).

REDAC follows the black box approach of operational amplifier based computing. This means REDAC
is a giant replacement for an arithmetic-logical unit (ALU) of a traditional digital processor. The ana-
log computing elements of REDAC can carry out basic mathematical operations such as addition and
multiplication, but they can carry out also advanced operations such as integration in time. They do
so at high accuracy and completely continous in time and with continous values. This is an important
property of the REDAC compute elements but also its interconnection network, in short CTCV (contin-
uous time, continuous variable). For the analog network, this means that the connections between
the analog computing elements within a REDAC system are not based on switched capacitors but
instead on static (reconfigurable) switching matrices. Although a switched capacitor network could
have simplified the actual hardware implementation, it would immediately invalidate the low energy
footprint of the analogy compute paradigm.

3.2 The system matrix

When using an analog computer such as REDAC, one maps a mathematical set of equations onto
an electronical circuit, also refered to as compute graph. When drawing the adjacency matrix of this
graph, one can think of REDAC as a large interconnection matrix of size𝑁2 with𝑁 compute elements
at the edges, as illustrated in figure Fig. 3.1.

This illustration should be understood as following: At the left side, there are computing elements
which feed their output to a column of a matrix (this is called a fan-out). Each matrix element is real-

10

REDAC Manual, Release v1.0-NN-g6a89d8f

Fig. 3.1: Interconnection matrix with implicit summing capabilities (Note: in fact this figure shows a
Single cluster).

3.2. The system matrix 11

REDAC Manual, Release v1.0-NN-g6a89d8f

valued and constant during analog computation time (this is conceptually called a potentiometer).
One can imagine that each cell in the row subsequently holds the incoming compute result multiplied
with the matrix value at that place. The figure shows a special kind of matrix which has the property
of building the column sum, i.e. there is a fan-in happening which reduces the values by building a
sum. There is then a 1:1 correspondence of columns and rows, i.e. in the simplest case row 𝑖 feeds
back to column 𝑖 (monadic compute element) whereas the summing reduction is a bit simplistic for
dyadic compute elements such as a multiplier which has (in theory at least, in REDAC exactly) two
inputs which are supposed to be multiplied together.

This way, arbitrary connections between compute elements are possible (also refered to as all-to-all
connectivity). In practice, however, REDAC allows only for sparse matrices, i.e. does not allow arbi-
trary connections between computing elements but only a tiny subset, with a sparsity beyond 90%.
It is the job of the software to determine possible connections in order to make your mathematical
problem fit on the computer.

3.3 Available compuing elements

In its final expansion stage, REDAC will have at the ballpark order of 104 computing elements of each
kind, i.e. time integrators or multipliers. As already indicated above, addition is done “for free” by
the interconnection scheme and thus available in much wider terms. In the same spirit, REDAC has at
the order of at least 105 digital potentiometers (“weighted edges” in the interconnection graph) and
many more non-weighted connections.

The computer will have about 103−4 analog-to-digital converters that can be routed to different com-
puting elements, making flexible read-outs and debuggings of complex calculations possible.

The computer can be partitioned (time-sharing) by means which follow its hierarchical structure. Ex-
plaining this structure is beyond the scope of this short introduction. Instead, see section Section 14
to read more about the computer architecture.

3.3. Available compuing elements 12

CHAPTER

FOUR

EXAMPLE APPLICATIONS

In the current software revision of REDAC, users are supposed to be given circuit configuration files (a
concept also known as netlist (https://en.wikipedia.org/wiki/Netlist)) which are refered to as config.
json in the following. These circuit configuration files encode the actual mathematical problems.
Their generation is done by software by tooling which will provided at a later stage.

The usage of REDAC is currently therefore basically the submission of aconfig.jsonfile, next to some
basic information about the simulation parameters (such as simulation runtimes or for data querying
of measurement variables).

Given the Python client (section Getting started), you can invoke examples either from your operating
system command line or from python code, using the given client as a library.

For the following example, please download the exemplaric config.json file first.

In the print version of this document, a compact version of the config file is printed for illustrative
purpose. Please do not try to type in this file at your computer but instead head to the online version
of this document and download the ASCII file for straight usage.

1 {"00-00-00-00-00-00":{"/0":{"/C":{"elements":[0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
→˓0.0,0.0,0.0,0.0,0.0,-1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.
→˓0,0.0,0.0,0.0]},"/I":{"outputs":[[15],[],[],[],[],[],[],[],[],[],[],[],[],[],[],
→˓[]],"upscaling":[false,false,false,false,false,false,false,false,false,false,
→˓false,false,false,false,false,false,false,false,false,false,false,false,false,
→˓false,false,false,false,false,false,false,false,false]},"/M0":{"elements":[{"ic
→˓":-0.82,"k":10000},{"ic":0.0,"k":10000},{"ic":0.0,"k":10000},{"ic":0.0,"k
→˓":10000},{"ic":0.0,"k":10000},{"ic":0.0,"k":10000},{"ic":0.0,"k":10000},{"ic":0.
→˓0,"k":10000}]},"/M1":{},"/U":{"outputs":[null,null,null,null,null,null,null,
→˓null,null,null,null,null,null,null,0,null,null,null,null,null,null,null,null,
→˓null,null,null,null,null,null,null,null,null]}},"/T":{"muxes":[null,null,null,
→˓null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,
→˓null,null,null,null,null,1,null,null,null,null,0,null,null,null,null,null,null,
→˓null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,
→˓null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,
→˓null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,
→˓null,null,null,null,null,null,null,null,null,null,null,null]},"adc_channels
→˓":[0]},"00-00-00-00-00-02":{"/0":{"/C":{"elements":[0.0,0.0,0.0,0.0,0.0,0.0,0.0,
→˓0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
→˓0.0,0.0,0.0,0.0,0.0]},"/I":{"outputs":[[10],[],[],[],[],[],[],[],[],[],[],[],[],
→˓[],[],[]],"upscaling":[false,false,false,false,false,false,false,false,false,
→˓false,false,false,false,false,false,false,false,false,false,false,false,false,
→˓false,false,false,false,false,false,false,false,false,false]},"/M0":{"elements

(continues on next page)

13

https://en.wikipedia.org/wiki/Netlist

REDAC Manual, Release v1.0-NN-g6a89d8f

(continued from previous page)
→˓":[{"ic":0.0,"k":10000},{"ic":0.0,"k":10000},{"ic":0.0,"k":10000},{"ic":0.0,"k
→˓":10000},{"ic":0.0,"k":10000},{"ic":0.0,"k":10000},{"ic":0.0,"k":10000},{"ic":0.
→˓0,"k":10000}]},"/M1":{},"/U":{"outputs":[null,null,null,null,null,null,null,
→˓null,null,null,null,0,null,null,null,null,null,null,null,null,null,null,null,
→˓null,null,null,null,null,null,null,null,null]}},"/T":{"muxes":[null,null,null,
→˓null,null,null,null,null,null,0,null,null,1,null,null,null,null,null,null,null,
→˓null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,
→˓null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,
→˓null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,
→˓null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,
→˓null,null,null,null,null,null,null,null,null,null,null,null]},"adc_channels
→˓":[0]}}

We primarily support the Python programming language as the reference implementation. The way
how to upload a configuration file is like

you@localhost> redacli run --host https://redac.anabrid.com [--partition␣
→˓partition_id] config.json
[CSV output of measurement variables]

or, straight from the python programming language (REPL):

you@localhost> python
>>> import json
>>> from anabrid.redaccess.api.client.redac_client import REDACClient
>>> redac = REDACClient("https://redac.anabrid.com")
>>> redac.login(username, password) # to be set by the user
>>> with open("config.json", "r") as f:
>>> config = json.load(f)
>>> job_id, results = redac.solve(config, 0)
>>> logs = redac.log(job_id)

Afterwards, the variables results resp. logs will hold the job results in a JSON format and the job’s log
as a string array.

Note that other than these high-level functions, REDACClient contains several functions that allow to
submit one or multiple job asynchronously, to multiple partitions, then wait for them to finish and
collect their results all at once:

import asyncio
import json
from anabrid.redaccess.api.client.redac_client import REDACClient

async def submit_batch():
redac = REDACClient("https://redac.anabrid.com")
redac.login(username, password)
with open("config.json", "r") as f:

config = json.load(f)

asynchronously submit three jobs
(continues on next page)

14

REDAC Manual, Release v1.0-NN-g6a89d8f

(continued from previous page)
jobs = [None, None, None]
for part_id in range(3):

job = {
"config": config,
"partition_id": part_id,
"label": "Job"

}
jobs[part_id] = asyncio.create_task(redac.submit_job(job))

wait until the three jobs were successfully submitted (and returned their ID)
for part_id in range(3):
while not jobs[part_id].done():
asyncio.sleep(0.5)

not wait until the jobs are done (in the meantime, you can do some other work)
for part_id in range(3):

job_id = jobs[part_id].result()
is_done = False

while not is_done:
is_done = (await redac.get_job_status(job_id).status == "COMPLETED")
asyncio.sleep(0.5)

finally, download and print results
for part_id in range(3):
job_id = jobs[part_id].result()
results = await redac.get_job_results(job_id)
print(json.dumps(results))

if __name__ == "__main__":
asyncio.run(submit_batch())

Save this script as batch.py, the execute it with python batch.py. If you are not familiar with the
async syntax used here, please refer to the official Python developer’s documentation.

15

CHAPTER

FIVE

FURTHER READING

You reached the end of the user-relevant manual. There is more to read, thought: If you are interested
to take a deep dive into REDAC programming, you can read the Developer manual. If you want to
become an administrator of the system, consider reading the Operators manual next.

In order to learn more about analog computing, we recommend the books and publications authored
by anabrid and the scientific community. In particular, you may be interested to follow these weblinks
for further recommendations:

• Videos and podcasts on analog computing (https://anabrid.com/videos-podcasts/)

• Research articles and primers on analog computing (https://anabrid.com/articles-books/)

16

https://anabrid.com/videos-podcasts/
https://anabrid.com/articles-books/

CHAPTER

SIX

ANABRID OPERATIONS

This section is dedicated to the REDAC1 Systems Operations Team at anabrid GmbH. The term
REDAC1 refers to the REDAC system with serial number 1, which is build for the customer DLR-QCI
(https://qci.dlr.de/). During 2025, anabrid will operate the system on a transitional basis for and in the
interests of the customer. In particular, software solutions that are not part of REDAC are provided and
operated within this transitional time. These are listed in this section and their use is documented.
There is no documentation regarding administration, as administration is carried out by the Anabrid
Systems Operations Team.

Within this transitional time, the system operated by anabrid is globally reachable via the internet at
https://redac.anabrid.com

Fig. 6.1: Overview about the REDAC-internal services vs. the services operated by anabrid.

6.1 List of provided services

The following services are not part of REDAC but part of the operations teams, next to the actual
REDAC hardware and software maintenance. Similar systems are supposed to be hosted by a REDAC
customer. See also figure Overview about the REDAC-internal services vs. the services operated by
anabrid. for an overview.

Systems Access to redac.anabrid.com
General system access is provided over anabrid paid 1gbit/sec symmetric internet fiber up-

17

https://qci.dlr.de/
https://redac.anabrid.com

REDAC Manual, Release v1.0-NN-g6a89d8f

link which has a guaranteed uptime of certainly less then 99% (i.e. 14min downtime per day
(https://uptime.is/99)).

Systems website landing page “User Interface” https://redac.anabrid.com/ui/
This is a little static website (Sveltekit (https://svelte.dev/docs/kit/introduction)) which is man-
aged, amongst other static assets, via SFTP. The website itself, in particular, is a goodie and not
part of the official software infrastructure

Status Page https://status.anabrid.net/status/redac1
Anabrid operates a number of status services which allows to have a quick overview about the
availability and reliability of the services. The reachability of the REDAC1 System is monitored
on this website.

Grafana dashboard https://stats.redac.anabrid.com/
For demonstrating/displaying temperature readout. Runs as a docker container on the Super-
Controller.

JupyterHub instance https://jupyter.redac.anabrid.com/
This is a Kubernetes cluster operated by the OPs team which has direct access to REDAC internal
network. However, it is physically hosted and served not on SuperController but dedicated bare
metal digital hardware.

Authentification https://auth.redac.anabrid.com/
Anabrid transitionally operates the user authentification system for REDAC1. The underlying
software system Keycloak is an official suggestion to be used also by the customer within the
REDAC software infrastructure, cf. Authentification.

User Helpdesk https://helpdesk.anabrid.com/
Anabrid runs a ticketing system in order to provide help for REDAC1 users. This is a company
wide ticketing system where anabrid employees help on improving the customers jorney. Users
can open a ticket straight on the helpdesk or write a mail to helpdesk@anabrid.com. Please
insert the term REDAC1 in the subject message of your tickets. Clearly, this ticketing system is
not part of REDAC infrastructure.

Anabrid User Hotline 0049 30 629 3047 20
Anabrid runs a telephone line which allows people to ask for help within regular office hours.
There is no guarantee that support can be provided via telephone. However, the onsite team
in Ulm is always happy to receive inqueries at a direct visit.

6.2 User account creation

Self-Registration is enabled for all user accounts ending on @dlr.de. Otherwise, user accounts have
to be manually activated by the operations staff. Primary contact happens via the anabrid helpdesk.

ò Note

REDAC has a standalone user account system (see Authentification) which is by no means related
to any institutional user managament systems by DLR or anabrid.

6.2. User account creation 18

https://uptime.is/99
https://redac.anabrid.com/ui/
https://svelte.dev/docs/kit/introduction
https://status.anabrid.net/status/redac1
https://stats.redac.anabrid.com/
https://jupyter.redac.anabrid.com/
https://auth.redac.anabrid.com/
https://helpdesk.anabrid.com/
mailto:helpdesk@anabrid.com

REDAC Manual, Release v1.0-NN-g6a89d8f

6.3 Profile user data policy

Users who want to use the system up have to agree to the european General Data Protection Regula-
tion (GDPR). The following minimum amount of data is collected:

Technical Data

• User IP address

• technical browser/client identification information (for instance software versions)

• Queries sent to the system and replies got

Retention period: Logging and Performance evaluation, data is intentionally preserved only for
a fixed period of time and never leaves the system (i.e. the Super Controller).

Organizational Data

• Personal identification features (real name, business address, institutional affiliation,
telephone number, e-mail address)

• System Username

• System Password (only stored in encrypted form according to common cryptographic in-
dustry standards)

• A list of authorised security tokens such as a SSH public key or a JWT access token.

• Given consent obtained for personal data processing in accordance with the GDPR (Gen-
eral Data Protection Regulation, legislation in Germany)

Retention period: Data are preserved for the full period of operations, even after the user in-
tentionally deleted his account. This is neccessary for project reporting and evaluation.

ò Note

When using any services provided by anabrid, the general privacy policy by anabrid applies. It can
be found at https://anabrid.com/privacy-policy. Furthermore, the general terms and conditions
by anabrid apply. They can be found at https://anabrid.com/agb

6.3. Profile user data policy 19

https://anabrid.com/privacy-policy
https://anabrid.com/agb

Part II

Operators manual

20

CHAPTER

SEVEN

INTRODUCTION

Welcome to the Administrators and Operators handbook of REDAC, the Reconfigurable Discrete Ana-
log Computer. Please ensure you have read the User manual before approaching this part of the sys-
tem documentation.

Generally, REDAC is a professional high precision computer system intended for industrial settings.
The system is of low environmental demand but requires nevertheless some considerations for the
Physical Setup. Furthermore, the system generally requires low to no regular maintenance. Depend-
ing on your overall computer network, a substantial initial setup phase might be neccessary. The
relevant steps are described, amongst others, in the section Internal network.

7.1 Intended Audience

As a systems administrator or operator, you have a decent understanding in common IT networking
and Linux server administration. Before reading this, you should know at least how to configure at
small and home office (SOHO) level networking equipment.

. Warning

You are supposed to read this manual before doing any kind of physical work close to or with
REDAC. It contains essential guides how to deal with this kind of novel computing equipment.

7.2 Confidential Credentials given at system handover

At system purchase, you are prodived an access credential card. This card contains sensitive infor-
mation which you must not share with regular users nor system developers. It contains strong pass-
words individually assigned to your system. As the system administrator, you are supposed to take
over these access credentials and manage them. Consider using a password manager to track them.
Furthermore, you are strongly encouraged to change the default passwords. This card should look
roughly like the following table.

Table 7.1: REDAC Credentials Overview

Subsystem Scope User Password
Mikrotik Web GUI admin provided
Mikrotik Wifi SSID provided provided
Super Controller SSH/X11 login provided provided
Super Controller IPMI povided provided
Keycloak OpenID managament provided provided

21

REDAC Manual, Release v1.0-NN-g6a89d8f

7.3 Public Information on your REDAC installation

Next to the confidential system access information, you will get a card that contains the following
information which help to identify the device(s) you have at hand. They are not secret and can be
shared with users and developers, if neccessary:

• MAC addresses of the Mikrotik uplink ethernet port and Wifi access point

• Serial number(s) of the overall redac device and/or its individual parts

These public data should also be attached on a label on the device itself.

7.3. Public Information on your REDAC installation 22

CHAPTER

EIGHT

PHYSICAL SETUP

This section provides an overview about physical handling of the system. These information are rele-
vant for on-site operators in particular at preparing the installation site, mounting, dismounting and
moving the computer. For an overview, consider the following short specs:

Dimensions and Weight (Upper limits for one rack)
2 x 3 x 2 m, weight: 800 kg

Typical Dimension of one Rack
HBT 1800 x 800 x 800 mm (37 HE)

Form factors for outer structures
DS8837 (https://www.netzwerkschrank24.de/37-he-19-zoll-netzwerkschrank-mit-glastur-
800-x-800-x-1800-mm-bxtxh.html) server rack (metal and glass) and EuropacPRO Schroff
(https://may-static.de/44966.pdf?1583829815925) chassis (aluminium)

Max Operating Pressure
1030 hPa

Max Environmental Operating Temperature
60° Celsius

8.1 Spatial requirements

When setting up REDAC for the first time or evaluating potential locations for its installation, it is es-
sential to carefully consider the following aspects to ensure optimal functionality and ease of use.

Suitable Rooms
REDAC is highly versatile in terms of placement and does not impose strict requirements on the
type of room. It can be installed in a standard office space with a carpeted floor, or even in a
small, poorly ventilated storage room. The system’s design ensures reliable operation in such
varied environments. However, for long-term usability and maintenance comfort, a clean and
relatively dust-free area is recommended to minimize cleaning needs and protect components
from excessive wear due to environmental factors.

Temperature and Ventilation Requirements
REDAC does not depend on specialized temperature control or ventilation systems. All analog
components within REDAC are passively cooled, ensuring silent and reliable operation without
the need for fans or external cooling mechanisms. The active cooling requirements are limited
to the digital components, such as the routing switch and server, which use standard built-in
cooling systems. These components are designed to operate effectively in typical office or lab
conditions, with ambient temperatures ranging from 10°C to 60°C.

23

https://www.netzwerkschrank24.de/37-he-19-zoll-netzwerkschrank-mit-glastur-800-x-800-x-1800-mm-bxtxh.html
https://may-static.de/44966.pdf?1583829815925

REDAC Manual, Release v1.0-NN-g6a89d8f

Physical Accessibility
To facilitate setup and maintenance, it is recommended to leave approximately 50 cm of clear-
ance in each direction around the REDAC rack. This space allows technicians to access all neces-
sary components without difficulty during servicing. While this is not strictly required for daily
operations, it can significantly simplify routine maintenance and troubleshooting procedures.

Power
REDAC requires a single-phase 120V/240V AC mains connection secured with an ordinary 16A
fuse. These conditions are available in virtually any data center, working office or laboratory.
For details, see Powering the system.

Network
REDAC requires a standard Ethernet connection with 10/100/1000 BASE-T and an RJ45 inter-
face. This type of network connectivity is widely available and cost-effective. A single network
cable is sufficient for typical operations, and a redundant uplink is not necessary unless ad-
vanced failover or high-availability configurations are desired. For most scenarios, basic net-
work access is adequate to meet operational requirements.

8.2 Safety Instructions for Physical Handling of the Device

When physically handling the REDAC system, it is crucial to follow these safety instructions to ensure
both personal safety and the integrity of the equipment:

Always Wear an ESD Wrist Strap When Opening the Rack from Behind
The REDAC rack frame is fully grounded and equipped with several pre-installed ESD wrist
straps connected directly to the frame. Always ensure you are wearing one of these straps be-
fore coming into contact with any electrical components, especially when accessing the device
from the rear side. This precaution is essential for protecting the sensitive electronics within
REDAC from electrostatic discharge, which can cause irreversible damage to critical compo-
nents. Make sure the wrist strap is properly secured and functioning before beginning any work.

Do Not Modify the Hardware Setup
Under no circumstances should the hardware configuration of REDAC be altered without proper
authorization. Opening or unmounting the iREDAC chassis, or making unauthorized modifica-
tions, will void the warranty and liability coverage of the entire system. Hardware changes are
strictly reserved for trained and certified personnel with specific expertise in handling the sys-
tem. It is important to note that most system operators are not certified for such tasks. Unau-
thorized alterations can compromise the functionality and safety of the device.

8.3 On-Device Indentifier Tags

The REDAC rack has the following on-device type plates for device identification:

• Each iREDAC has a unique serial number (a short integer as well as a UUID which is displayed
as QR code). The iREDAC labels are attached on the backplane.

• The REDAC rack has a bigger type plate at the back side. There is also a label which shows the
EAN number of the device as a 1D barcode, suitable for scanning while inventarization.

REDAC has a EAN-13 (European Article Number) which is a GTIN (Global Trade Item Number) which is
a UPC (Universal Product Code). This number is 1-700001-948842. This number refers to a iREDAC,
which is at a rack level scale the building block of REDAC. The iREDACs also have a CE certification
which is indicated by the appropriate CE symbol.

For legal reasons, the type plates must not be removed or artificially covered.

8.2. Safety Instructions for Physical Handling of the Device 24

REDAC Manual, Release v1.0-NN-g6a89d8f

8.4 Moving

When relocating or moving the REDAC rack, it is important to carefully consider the following points
to ensure both the safety of the equipment and the personnel involved.

Move Avoiding Vibrations
Although the REDAC rack is equipped with wheels, their use is not recommended for covering
longer distances. Wheels are suitable for minor adjustments in position but may expose the
rack to excessive vibrations during extended movement. Instead, it is advisable to use equip-
ment specifically designed for smooth and vibration-reduced transport, such as a pallet truck
or a similar lifting device. This approach minimizes the risk of damage to the internal compo-
nents, ensuring the longevity and reliability of the system.

At Least Two People
A minimum of two people is required at all times when moving the REDAC rack. This precaution
helps to maintain control and balance of the large and heavy structure, significantly reducing
the risk of the rack tipping over. Coordination between the individuals involved is essential to
ensure safe handling, particularly when navigating tight spaces or uneven surfaces.

Make Use of the Installation Supports
Before moving the rack, ensure that the installation supports are securely unmounted to allow
free movement. Once the relocation is complete, re-mount the installation supports to stabi-
lize the rack and relieve stress on the wheels. These supports are critical for fixing the rack’s
position and maintaining its stability during operation. Always keep the appropriate wrench
readily available to lock or unlock the installation supports as needed.

Lock the Door Before Moving
To prevent the rack door from opening unintentionally during movement, ensure that the door
is securely locked before starting the relocation process. This simple step protects the contents
of the rack and avoids potential damage or injury caused by the door swinging open while in
transit.

8.5 Device Disposal

Proper disposal and recycling of the REDAC system are essential to ensure compliance with environ-
mental regulations and to minimize the impact of electronic waste. For this purpose, please contact
the manufacturers for guidance on the appropriate steps to take when disposing of the system.

Electronic waste disposal is a free service offered by Anabrid GmbH, the manufacturer of REDAC. They
provide expert assistance to ensure that all components of the system are handled responsibly, in-
cluding recycling of electronic parts and disposal of hazardous materials in accordance with applica-
ble laws and environmental standards.

When preparing the system for disposal, take the following steps:

1. Contact Anabrid GmbH: Reach out to our customer service or designated support channels to
inform them about the disposal and to arrange for the necessary logistics. They may provide
you with shipping instructions or coordinate a collection service.

2. Decommission the System Safely: Disconnect the system from power and network connections.
Anabrid GmbH will take care of packing and relocating for transporation. Be sure to include all
components, such as power supplies and networking hardware, if requested.

4. Follow Local Regulations: If you are unable to use Anabrid GmbH’s disposal service, ensure that
the device is recycled through a certified electronic waste handler in compliance with local laws
and regulations.

8.4. Moving 25

REDAC Manual, Release v1.0-NN-g6a89d8f

By utilizing Anabrid GmbH’s free disposal service, you contribute to a sustainable lifecycle for elec-
tronic devices, ensuring that valuable materials are recovered and hazardous waste is properly man-
aged. For further details, consult the documentation provided by Anabrid GmbH or visit their our
website.

8.5. Device Disposal 26

CHAPTER

NINE

POWERING THE SYSTEM

As noted earlier, the REDAC system imposes minimal requirements on its power supply. Any single-
phase safety plug operating on 120V/240V AC mains with a maximum current of 16A is sufficient for
proper operation.

The REDAC-specific (mostly analog) components are powered with high quality 24V DC power sup-
plies with a maximum rating of 300W each.

s Important

A correctly grounded mains connection is crucial for safe and reliable operation. Most data cen-
ters, working offices, or professional laboratories already provide suitable power infrastructure.
Ensure that the grounding is verified to avoid potential safety risks and to guarantee system sta-
bility.

While the use of a data center power delivery unit (PDU) or an uninterruptible power supply (UPS) is
not mandatory, these devices can offer significant benefits. A UPS, particularly one with a battery-
backed design, provides additional protection against power surges, outages, and voltage fluctua-
tions. Moreover, a UPS can stabilize the input voltage, which may enhance the performance of the
internal power supply. This stability can, in turn, improve the accuracy and reliability of REDAC’s
computing operations, making it a worthwhile consideration for critical applications.

9.1 System Startup

REDAC features a 19-inch switchable power socket located at the rear of the rack (see Fig. 9.1). This
design allows the entire system to be powered on with a single flip of the master switch, provided the
mains connection has been properly plugged in and secured.

Once power is supplied to the system, the following sequence typically occurs automatically (ordered
by their time to readiness):

1. The Ethernet networking equipment (router or switch) powers on immediately, establishing
the network connections required for system communication.

3. The analog power supply activates, which subsequently powers all connected analog modules
and prepares them for operation. This also means that all Microcontrollers power up and wait
for an IP address with DHCP calls until the routing switch assigns them an IP address.

2. The server, also known as the supercontroller, powers on, waits for an IP address and starts up
all relevant services in correct order. They then begin to initialize their control and managament
processes.

27

REDAC Manual, Release v1.0-NN-g6a89d8f

Mains

Main outlet

Analog outlet Server Switch

Analog Power Supply 1 Analog Power Supply 2

Fig. 9.1: 240V power distribution in REDAC

9.1. System Startup 28

REDAC Manual, Release v1.0-NN-g6a89d8f

Although each of these components can be powered on or off individually if necessary, this is rarely
required under normal operating conditions. The automated startup process ensures that the system
reaches an operational state efficiently and with minimal user intervention. However, users should
verify that the system initializes correctly and observe for any unexpected behavior during startup,
especially after relocation or maintenance.

ò Note

The REDAC system operated by anabrid (see Anabrid Operations) can be monitored at https:
//status.anabrid.net/status/redac1 in order to see when all systems are up and running after
powerup.

9.2 System Shutdown

When shutting down the REDAC system, follow these guidelines to ensure a safe and proper shutdown
process:

1. The Ethernet networking equipment (router or switch) can be powered off without any adverse
effects on the system. Since the networking components do not store critical data, there is no
risk of data loss when they are turned off.

2. The server (supercontroller) requires a manual shutdown sequence to prevent data loss. This
is typically done by executing the command sudo shutdown -h now at the Linux command
line. This ensures that all running processes are terminated gracefully, and any data in memory
is safely written to storage before the system powers down.

3. The analog components of the system can be powered off without any significant effects. These
parts do not rely on active processes or stored data and can be safely disconnected from power
as needed.

ò Note

While a sudden power loss is generally not critical for the REDAC system, it is worth noting that the
server is equipped with a journaling file system. This feature ensures data integrity and facilitates
recovery mechanisms even in the event of an abrupt shutdown. In such cases, the only potential
loss would involve volatile database entries, which are typically of minor importance in practical
applications. Despite this resilience, a controlled shutdown process is always recommended to
avoid unnecessary recovery procedures and ensure smooth system operation.

9.2. System Shutdown 29

https://status.anabrid.net/status/redac1
https://status.anabrid.net/status/redac1

CHAPTER

TEN

INTERNAL NETWORK

REDAC-internal Ethernet network

Mikrotik Switching Router

SuperController Server MCU_1 MCU_N

Outside Internet

Fig. 10.1: Graph of the logical (internal) Ethernet of REDAC. See main text for explanation.

REDAC features an internal IPv4 network somewhat similar to a typical home subscriber network (Fig.
10.1). This network has the following physical components:

Mikrotik Switching Router
Off-the-shelf rack mount router including a 24port front facing ethernet switch. The first port
of the switch is dedicated to the external uplink while all other ports are bridged to an internal
network. The device is introduced in section The Mikrotik Router.

Super Controller (x86 Server)
An off-the-shelf low power low noise low depth server with IPMI out of band remote managa-
ment facilities. The device can also be used as a terminal server interactively. For further details
see section The Super Controller Server.

Hybrid Controllers (Teensy Microcontrollers)
The network contains dozens of microcontroller units (MCU), each of them connected with
100Base-TX to the switch and centrally managed by the super controller. These devices pro-
vide/require no direct network access by system operators.

30

REDAC Manual, Release v1.0-NN-g6a89d8f

This section will present the particular components in detail and explain relevant configuration steps.

ò Note

At the time of reading this, you should have the Confidential Credentials given at system handover
next to the Public Information on your REDAC installation ready at your hand. Note that the authen-
tification systems of REDAC internal network structure are scoped and not unified/synchronized.
That means that each device has a local user and password configuration and no single login ex-
ists. Do not confuse the scope of the credentials. credentials listed with the REDAC public appli-
cation level authentification, which are managed by OpenID and discussed in the section Authen-
tification.

10.1 Initial network setup/access

By default, the router behaves as a IPv4 DHCP client at the external interface. If you have a DHCP
server running in the outer network at your control, this default configuration might be suitable for
you. In this case, you can access the super controller server by means of the TCP ports exposed (by
NAT in the router). You can also take the server as an intermediate to configure the router. Note that
the router configuration interface (web, ssh) is only accessible from the internal network.

� Tip

By default, the REDAC Router behaves similiar to a IPv4 home subscriber setup (think of a Fritzbox
in Germany): There is a restrictive firewall allowing no ingoing traffic, doing masquerading and
exposing thus only a single IP address at the outer network. System operators are encouraged to
enter the internal network with their equipment, in particular for setup and maintenance.

If you cannot make use of REDAC acting as a DHCP client but need to have it a given and fixed address,
you need to get access to the internal network, which requires physical access. There are two principal
ways how to do that:

• Connect your notebook/computer to the internal network or

• Connect a monitor and keyboard/mouse to the super controller and make use of it as a stan-
dalone computer.

ò Note

The neccessary ports (USB and VGA) for connecting a terminal to the server are located at the
front of the rack. If there are no free USB slots, you can plug out some USB devices while not using
the Analog part of REDAC. Make sure to connect all USB devices back after having finished the
administrative work, or use a USB hub if neccessary.

For connecting your own computer to the internal REDAC network, there exist two options:

• Either you connect the Wifi hotspot opened by the router. Keep the SSID and WPS2 password
credentials at hand in order to connect.

• Or you connect physically with a network cable to one of the free ports on the switch.

10.1. Initial network setup/access 31

REDAC Manual, Release v1.0-NN-g6a89d8f

In both ways, your computer should be assigned an address by the REDAC internal DHCP server. If
you cannot run a DHCP client on your computer, you may choose a fixed address freely in the range
192.168.104.5 - 192.168.104.9 with subnet mask 255.255.255.0 and gateway 192.168.104.1.
The gateway acts also as DNS server.

If you, instead, choose to make use of the super controller as an interactive computer, you must have
the username and password credentials at hand to login at the desktop greeter. After successful login,
the linux computer will launch a desktop environment which allows you to start the usual applica-
tions such as a web browser or a terminal. If you do not have a mouse available, hit CTRL + ALT + F2
or F3 in order to switch the virtual desktop to a TTY instance which allows you to use the linux shell
without a graphical user interface.

. Warning

Keep in mind that the direct access to the internal REDAC network is only intended for system
administrators and not regular users. The reason is that ordinary users should not communicate
directly with the microcontrollers. Otherwise, the Super Controller is bypassed and is prevented
from doing his work correctly, messing up proper system managament.

The same is true for the Super Controller graphical interface! If you want to provide your users
a console like desktop access in the same room, for instance, please setup your own computers
which are put outside of REDAC.

10.2 The Mikrotik Router

The Mikrotik router runs the proprietary operating system RouterOS by Mikrotik. It is rich in features
and the supplier provides a detailed documentation available at https://help.mikrotik.com/docs/. If
you are not familiar with this technology, please read the section Getting started in the linked Mikrotik
documentation.

The REDAC ships with the mikrotik model type CRS326-24G-2S+RM. It features a managed 24 port
gigabit switch next to the routing capabilities.

10.2.1 Relevant settings

The router comes with REDAC-specific default settings (given below) which only use a tiny fraction of
all functions. Virtually any professional grade router available on the market, such as Cisco, Linksys,
Juniper and other can do the same. Note that the MCUs only have a fast ethernet uplink (100mbit)
and thus modern multi-gigabit powerhorses are not neccessary. The Mikrotik is therefore a sufficient
and energy saving choice.

The following router configuration options must not be changed by the systems operator:

Internal ethernet configuration
All ports are bridged except port 1, which belongs to the external port. The wifi (activated by
default) is also bridged to the internal network.

Internal network DHCP server and IP configuration
There is a single subnet 192.168.104.0/24 with DHCP enabled. The router has the internal IP
192.168.104.1/32. There is no IPv6 active in the REDAC internal network.

TCP port forwarding (NAT) for the super controller
The super controller has a fixed IP address by the mikrotik DHCP server. TCP ports 22, 80, 443
are dst-nat to the super controller.

10.2. The Mikrotik Router 32

https://help.mikrotik.com/docs/

REDAC Manual, Release v1.0-NN-g6a89d8f

In contrast, the system operator is invited to change not only, but in particular the following default
options:

• Changing the behaviour at the external interface, called ether1, in particular changing the IPv4
configuration or enabling IPv6.

• Changing or disabling the Wifi AP

• Changing (sharpening or softing) the default firewall

• Changing the access credentials

• Making use of advanced functions such as VPN services.

10.2.2 How to access the REDAC Ethernet/IP Routing Switch

When being connected to REDACs internal network, access the mikrotik web browser based graph-
ical user interface by pointing your browser to http://192.168.104.1. Your browser should show
you a login mask where you have to fill out the given credentials. At Fig. 10.2 you can see a typical
screenshot of the web browser based graphical user interface of the router after having logged in
successfully .The page shown allows to turn of the DHCP client behaviour of the REDAC router.

Fig. 10.2: Mikrotik RouterOS Web Browser GUI screenshot

Alternatively, the router provides an SSH console which allows you to display and edit the router
settings without a graphical user interface. This comes in handy in particular when you access the
system with the linux console (VGA/keyboard directly connected to super controller) without having
a USB mouse at hand.

some@computer $ ssh admin@192.168.104.1
...
[admin@REDAC1-EthRouter1-MikroTik] > /ip/address/print
Flags: D - DYNAMIC
Columns: ADDRESS, NETWORK, INTERFACE
ADDRESS NETWORK INTERFACE

(continues on next page)

10.2. The Mikrotik Router 33

REDAC Manual, Release v1.0-NN-g6a89d8f

(continued from previous page)
0 192.168.104.1/24 192.168.104.0 bridge
1 10.110.0.26/32 10.110.0.0 wg-tinybridge
2 D 192.168.100.168/24 192.168.100.0 ether1

10.2.3 Mikrotik default configuration

The device default configuration is shown in the following listing. It can be obtained by typing /
export compact into the console. Save this listing to a text file and you can restore the device con-
figuration at any time:

2025-01-08 20:00:42 by RouterOS 7.13.5
software id = 1SRY-CS15
#
model = CRS326-24G-2S+
serial number = HGC09YWZXTY
/interface bridge
add admin-mac=D4:01:C3:80:2D:EB auto-mac=no comment=defconf name=bridge
/interface list
add name=WAN
add name=LAN
/ip hotspot profile
set [find default=yes] html-directory=hotspot
/ip pool
add name=dhcp ranges=192.168.104.10-192.168.104.250
/ip dhcp-server
add address-pool=dhcp interface=bridge name=dhcp1
/port
set 0 name=serial0
/interface bridge port
add bridge=bridge comment=defconf disabled=yes interface=ether1
add bridge=bridge comment=defconf interface=ether2
add bridge=bridge comment=defconf interface=ether3
add bridge=bridge comment=defconf interface=ether4
add bridge=bridge comment=defconf interface=ether5
add bridge=bridge comment=defconf interface=ether6
add bridge=bridge comment=defconf interface=ether7
add bridge=bridge comment=defconf interface=ether8
add bridge=bridge comment=defconf interface=ether9
add bridge=bridge comment=defconf interface=ether10
add bridge=bridge comment=defconf interface=ether11
add bridge=bridge comment=defconf interface=ether12
add bridge=bridge comment=defconf interface=ether13
add bridge=bridge comment=defconf interface=ether14
add bridge=bridge comment=defconf interface=ether15
add bridge=bridge comment=defconf interface=ether16
add bridge=bridge comment=defconf interface=ether17
add bridge=bridge comment=defconf interface=ether18
add bridge=bridge comment=defconf interface=ether19
add bridge=bridge comment=defconf interface=ether20

(continues on next page)

10.2. The Mikrotik Router 34

REDAC Manual, Release v1.0-NN-g6a89d8f

(continued from previous page)
add bridge=bridge comment=defconf interface=ether21
add bridge=bridge comment=defconf interface=ether22
add bridge=bridge comment=defconf interface=ether23
add bridge=bridge comment=defconf interface=ether24
add bridge=bridge comment=defconf interface=sfp-sfpplus1
add bridge=bridge comment=defconf interface=sfp-sfpplus2
/interface list member
add interface=ether1 list=WAN
add interface=bridge list=LAN
/ip address
add address=192.168.104.1/24 interface=bridge network=192.168.104.0
/ip dhcp-client
add interface=ether1
/ip dhcp-server network
add address=192.168.104.0/24 dns-server=192.168.104.1,8.8.8.8 gateway=192.168.104.
→˓1 netmask=24
/ip firewall nat
add action=masquerade chain=srcnat out-interface-list=WAN
/system clock
set time-zone-name=Europe/Berlin
/system identity
set name=REDAC1-EthRouter1-MikroTik
/system note
set show-at-login=no
/system routerboard settings
set boot-os=router-os enter-setup-on=delete-key

Note that this listing does not include any default passwords, i.e. it will not change the device users
or wifi access.

10.3 The Super Controller Server

The Super Controller is the name both for a certain kind of software service and the physical server
built into REDAC. This section will only cover the physical server and its operating system. For appli-
cations running on this server, see for instance Services, Authentification and in general the overview
of REDAC-specific software in the developers manual.

10.3.1 Server Hardware

REDAC ships with a 1U low noise Mini-ITX server based on the SuperMicro Xeon Broadwell SoC server-
grade mainboard X10SDV-4C and equipped with 32GB RAM and 1 TB SSD. The low depth enclosure
has a single power supply and front facing I/O, making it easy to connect a KVM (monitor/keyboard)
or USB stick. Most imporant is the IPMI feature which ensures out of band / lights of managament of
the server.

This server was chosen due to its compact form factor and not for high availability. In principle virtu-
ally any other rack mountable server is suitable to fulfill the job, in particular any product made by
large server companies such as Dell, HP or Supermicro.

10.3. The Super Controller Server 35

REDAC Manual, Release v1.0-NN-g6a89d8f

10.3.2 Server Operating System

The Super Controller server is shipping with the Ubuntu Server GNU/Linux distribution and is primar-
ily supposed to be managed via SSH. Access is possible straight from outside the REDAC network as
the SSH port is exposed by the router. It is up to the system administrator to also expose the IPMI or
to lock down the ports if no remote managament is needed or realized in other fashions.

In general, administrators are expected to be able to manage a Linux server and it is outside the scope
of this manual to discuss how to obtain graphical access from remote or how to upgrade the operating
system. The same applies with basic monitoring and health checks at an operating system level. The
system comes in standard configuration for Ubuntu Server, which means for instance that security
updates for system packages are installed automatically if internet access is available.

10.3.3 Login and usage of the server

There are a number of differnet ways to access the server: Either you connect physically (see also
Initial network setup/access) and use the standard VGA terminal (getty login) or graphical login
(X11 login greeter). Or you connect via network, primarily using SSH. We have the lightweight Xfce
(https://xfce.org/) desktop environment preinstalled which includes common tools to get the every-
day job done in the graphical user interface.

Via SSH, you have a number of options: Either you use plain SSH, which is just fine for any ad-
vanced Linux user and in particular operator. Or you combine SSH with graphical forwarding (i.e.
ssh -x). The most advanced way is to use the free terminal server/remote desktop software X2go
(https://wiki.x2go.org/) which is preinstalled. Again, Xfce should be chosen as the installed GUI. A
typical configuration screen is shown in figure Fig. 10.3, whereas figure Fig. 10.4 is shown a typical
running session.

Fig. 10.3: X2Go session initialization screenshot, showing the configuration options.

In order to have a better experience at the (remote) desktop, we recommend to disable the compositor
(3D features such as windows dropping shadows). We recommend to use xfce4-terminal as the
terminal application and firefox-esr as the web browser.

A powerful feature of X2Go is that it allows you to interrupt and resume sessions the same way

10.3. The Super Controller Server 36

https://xfce.org/
https://wiki.x2go.org/

REDAC Manual, Release v1.0-NN-g6a89d8f

Fig. 10.4: Graphical XFCE session running on the REDAC login server, showing a web browser and a
terminal.

as terminal multiplexers such as GNU screen (https://www.gnu.org/software/screen/) and tmux
(https://github.com/tmux/tmux/wiki) allow for the terminal. However, the session is by default not
shared with the direct terminal access session.

10.4 How user access works from outside

This section explains how general network access works, exemplaric for the Anabrid Operations:

First, the domain redac.anabrid.com resolves to the fiber internet uplink of the anabrid Ulm labs.
The router has a Destination-NAT firewall rule which forwards incoming traffic on TCP ports such as
80 (HTTP) or 443 (HTTPS) to the REDAC SuperController within the REDAC internal network. This is
possible because on-site, the REDAC internal network is accessible from outside. If this was not the
case, the REDAC itself (i.e. the The Mikrotik Router) should do a similar DNAT port forarding, given that
it has a single external IP address by default.

. Warning

DNAT port forwardings and reverse proxying to IP addresses can be fragile if the IP addresses of
the relevant devices or services are not static. These situations do happen in practice and result
in errors which can be hard to trace in particular if administrators are not familiar with the setup.
For instance, as a design choice in this network, the IP addresses are managed by permanent, yet
principally dynamic DHCP service entries. In particular, devices with multiple network interfaces
or changing MAC addresses are subject to different IP addresses if network cables are plugged
into other interfaces or MAC addresses are changed manually. On an application level, TCP ports
can easily become blocked by stalled server processes where some “clever” server code decides
to listen at some other address, rendering the whole system unreachable. In order to be able to
debug such problems quickly when they arise, administrators are urged to learn the route of user
requests from outside to the inner parts of REDAC and back.

10.4. How user access works from outside 37

https://www.gnu.org/software/screen/
https://github.com/tmux/tmux/wiki

REDAC Manual, Release v1.0-NN-g6a89d8f

On the SuperController server, there is the caddy webserver (https://caddyserver.com/) running. It
provides easy access to Let’s Encrypt (https://letsencrypt.org/) certificates and reverse proxying to
relevant services. The caddy webserver is steered by the configuration file /etc/caddy/Caddyfile
(see https://caddyserver.com/docs/caddyfile for syntax explanation) which has the following exem-
plaric content:

Caddyfile for the SuperController Webserver

(error_handler) {
handle_errors {

respond "{http.error.status_code} - {http.error.message} -- hint,␣
→˓check system availability at https://status.anabrid.net/status/redac1"

}
}

redac.anabrid.com {
root * /home/caddy-redac.anabrid.com
file_server

redir / /ui

redir /manual.pdf https://anabrid.dev/docs/redac-manual/redacmanual.pdf

redir /auth https://auth.redac.anabrid.com/

redir /api /api/
reverse_proxy /api/* 127.0.0.1:8081 # redaccess code = main REST␣

→˓interface

import error_handler
}

auth.redac.anabrid.com {
reverse_proxy 127.0.0.1:8080 # keycloak = main Authentification
import error_handler

}

stats.redac.anabrid.com {
reverse_proxy 127.0.0.1:3000 # grafana
import error_handler

}

jupyter.redac.anabrid.com {
reverse_proxy 192.168.102.251:8080 # *EXTERNAL* jupyter notebook server
import error_handler

}

...

This example shows how the Caddy server distributes incoming requests based on their domain
name or path. Given the current permeability between the Ulm lab network and the REDAC inter-

10.4. How user access works from outside 38

https://caddyserver.com/
https://letsencrypt.org/
https://caddyserver.com/docs/caddyfile

REDAC Manual, Release v1.0-NN-g6a89d8f

nal network, it is easy to reverse proxy also network services which are not physically hosted on the
same server.

10.4. How user access works from outside 39

CHAPTER

ELEVEN

SERVICES

This section lists the names and explains the maintenance of the REDAC-specific software on The
Super Controller Server. This also includes the supervision of log files and their general availability.

First of all, all REDAC software comes dockerized (https://www.docker.com/) and/or is maintained
as systemd services (https://systemd.io/). One of the most important properties is that all relevant
services come up automatically on system boot. This is ensured by having

• Python daemons being directly started by systemd units (within their relevant virtualenv
(https://virtualenv.pypa.io/en/latest/user_guide.html)).

• Single docker daemons being directly started by systemd units.

• Docker-Compose (https://docs.docker.com/compose/) services being automatically started by
docker.

If you don’t know how to maintain a sytemd service, please advise any contemporary linux adminis-
trators manual. The same applies with docker and in particular docker-compose.

11.1 Relevant systemd units

The relevant systemd units are named:

• redaccess-forward.service (Redaccess (Middleware))

• redaccess-api.service (Redaccess (Middleware))

• supercontroller-proxy.service (Pybrid Proxy)

• docker-keycloak.service (Authentification)

You can edit the service description files in /etc/systemd/system/<nameOfService>.

For each service, you can its status with sudo systemctl status <nameOfService>. You can
view the relevant logfiles with sudo journalctl --unit=<nameOfUnit> (with <nameOfService> =
<nameOfUnit>.service). Helpful options for journalctl are the follow flag -f to get interactive,
continous output as well as the date filtering such as --since today to see the relevant logs only.

This is the output of a typical status report:

you@redac1-sc0 $ sudo systemctl status supercontroller-proxy.service
o supercontroller-proxy.service - REDAC SuperControl Proxy

Loaded: loaded (/etc/systemd/system/supercontroller-proxy.service; static)
Active: active (running) since Tue 2025-02-11 07:34:48 UTC; 5min ago

Main PID: 3718259 (python)
(continues on next page)

40

https://www.docker.com/
https://systemd.io/
https://virtualenv.pypa.io/en/latest/user_guide.html
https://docs.docker.com/compose/

REDAC Manual, Release v1.0-NN-g6a89d8f

(continued from previous page)
Tasks: 2 (limit: 38307)

Memory: 26.5M (peak: 27.0M)
CPU: 995ms

CGroup: /system.slice/supercontroller-proxy.service
+- 3718259 /home/anabrid-admin/.cache/pypoetry/virtualenvs/pybrid-

→˓computing-XZRhPXGJ-py3.12/bin/python -m pybrid.cli.base --log-level=DEBUG redac␣
→˓-h 192.168.104.0/24 proxy --ma>
...
Feb 11 07:34:57 redac1-sc0 python[3718259]: 57.677 | WARNING | proxy | Target for␣
→˓MAC mapping from 00-00-00-00-00-00 to 04-E9-E5-17-E5-4F does not exist.
Feb 11 07:34:57 redac1-sc0 python[3718259]: Starting proxy on 0.0.0.0:5732...␣
→˓Press Ctrl+C to exit.

Furthermore, the following services are part of ubuntu software packages, they are not custom REDAC
software but relevant for correct operation:

• caddy with its configuration file at /etc/caddy/Caddyfile. This is the HTTPS webserver, REST
reverse proxy and main entrypoint. After changing the configuration file, a service caddy
reload is sufficient.

• ssh is the OpenSSH server which is crucial for managing the system from remote.

• lightdm is the graphical display manager (greeter), see also Login and usage of the server. When
you have trouble with the graphical terminal, try to restart this service.

11.2 Docker service overview

The following docker services are used/installed:

• redac-keycloak is a single keycloak (https://hub.docker.com/r/keycloak/keycloak) image
from dockerhub (https://hub.docker.com), managed by a systemd unit (see above) with rel-
evant options in the service description file.

• Grafana as a docker-compose setup

You can get a quick overview about running services with these commands:

you@redac1-sc0 $ sudo docker ps
CONTAINER ID IMAGE COMMAND ␣
→˓CREATED STATUS PORTS ␣
→˓ NAMES
bb9982649e60 quay.io/keycloak/keycloak:26.0.7 "/opt/keycloak/bin/k. . . " ␣
→˓47 minutes ago Up 47 minutes 8443/tcp, 0.0.0.0:8080->8080/tcp,␣
→˓:::8080->8080/tcp, 9000/tcp redac-keycloak
b9ce90eaa284 redis2influx "poetry run python -. . . " ␣
→˓21 hours ago Up 14 hours ␣
→˓ redis2influx
f0b7f3d79034 grafana/grafana-oss "/run.sh" 21␣
→˓hours ago Up 14 hours 0.0.0.0:3000->3000/tcp, :::3000->3000/tcp␣
→˓ grafana
515dd4d984cc influxdb:2 "/entrypoint.sh infl. . . " ␣
→˓21 hours ago Up 14 hours 0.0.0.0:8086->8086/tcp, :::8086->8086/

(continues on next page)

11.2. Docker service overview 41

https://hub.docker.com/r/keycloak/keycloak
https://hub.docker.com

REDAC Manual, Release v1.0-NN-g6a89d8f

(continued from previous page)
→˓tcp influxdb
c1ef8172ab3b redis/redis-stack "/entrypoint.sh" 21␣
→˓hours ago Up 14 hours 0.0.0.0:6379->6379/tcp, :::6379->6379/tcp,
→˓ 0.0.0.0:8001->8001/tcp, :::8001->8001/tcp redis
20dacd1c8e2a ghcr.io/goauthentik/server:2024.12.2 "dumb-init -- ak wor. . . " ␣
→˓4 weeks ago Up 14 hours (healthy) ␣
→˓ authentik_worker_1
4376dc22d03d ghcr.io/goauthentik/server:2024.12.2 "dumb-init -- ak ser. . . " ␣
→˓4 weeks ago Up 14 hours (healthy) 0.0.0.0:9000->9000/tcp, :::9000->9000/
→˓tcp, 0.0.0.0:9443->9443/tcp, :::9443->9443/tcp authentik_server_1
fddcad498baf postgres:16-alpine "docker-entrypoint.s. . . " ␣
→˓4 weeks ago Up 14 hours (healthy) 5432/tcp ␣
→˓ authentik_postgresql_1
716681800dab redis:alpine "docker-entrypoint.s. . . " ␣
→˓4 weeks ago Up 14 hours (healthy) 6379/tcp ␣
→˓ authentik_redis_1

For instance, the Grafana installation is managed with

you@redac1-sc0:/path/to/grafana # docker-compose ps
Name Command State ␣

→˓ Ports
--
→˓--
grafana /run.sh Up 0.0.0.0:3000->3000/tcp,:::3000->
→˓3000/tcp
influxdb /entrypoint.sh influxd Up 0.0.0.0:8086->8086/tcp,:::8086->
→˓8086/tcp
redis /entrypoint.sh Up 0.0.0.0:6379->6379/tcp,:::6379->
→˓6379/tcp, 0.0.0.0:8001->8001/tcp,:::8001->8001/tcp
redis2influx poetry run python -m src Up

Further details will follow as soon as the software is more mature. There will be a focus on installation-
specific details.

11.3 How to (re-)install the relevant software on the server

In most cases, reinstallation will be as easy as an docker-compose pull. Note that the REDAC soft-
ware for the super controller is not open sourced and thus updates will be provided by anabrid if there
is an appropriate contract discussing this in detail.

In the moment, please refer to the section about Software in the developer’s manual for further detail.

11.3. How to (re-)install the relevant software on the server 42

CHAPTER

TWELVE

AUTHENTIFICATION

For user authentification, the REDAC Frontend Access Code (redaccess) uses the OpenID
(https://openid.net/) standard. For convenience, the identiy and access managament server
Keycloak (https://www.keycloak.org/) is running on the Super Controller. Keycloak provides user
federation, strong authentication, user management, fine-grained authorization, and more. This sec-
tion describes the capabilities of this software and how to manage access to REDAC. Administrators
are strongly encouraged to read the relevant Keycloak guides (https://www.keycloak.org/guides)
and documentation. This section will only cover the REDAC-specific configuration settings and
intentionally does not provide a general introduction into the Keycloak software.

ò Note

The Keycloak OpenID service is supposed to secure access to all user facing services. This in-
tentionally does not cover any services of the Internal network. All operator and administrator
services have their local on-device user account managament. This is also a resilience measure in
order to enable maintainability of the overall system even if REDAC-specific services are down.

12.1 Scope and capablities of Keycloak on REDAC

By default the Keycloak installation has two realms:

1. The master (or default) realm which is only used for managing Keycloak itself. Login is at
https://auth.redac.anabrid.com/ which shows a big warning that this is not the correct login
for ordinary users.

2. The redac1-realm for actual user authentification, currently managed by Anabrid for QCI. The
most important URL for managing users and their groups in this realm is https://auth.redac.
anabrid.com/admin/master/console/#/redac1-realm/users. For programming against this
realm, the information at the ressource https://auth.redac.anabrid.com/realms/redac1-realm/
.well-known/openid-configuration may be interesting to get the URLs of OpenID endpoints.

The Keycloak itself is currently configured to be able to send out E-Mails via an anabrid mailserver
with the sending address redac1-keycloak@anabrid.dev. This is a no-reply sender only mail ac-
count for the keycloak daemon.

Keycloak is versatile in client policies and modifying the user registration.

43

https://openid.net/
https://www.keycloak.org/
https://www.keycloak.org/guides
https://auth.redac.anabrid.com/
https://auth.redac.anabrid.com/admin/master/console/#/redac1-realm/users
https://auth.redac.anabrid.com/admin/master/console/#/redac1-realm/users
https://auth.redac.anabrid.com/realms/redac1-realm/.well-known/openid-configuration
https://auth.redac.anabrid.com/realms/redac1-realm/.well-known/openid-configuration

REDAC Manual, Release v1.0-NN-g6a89d8f

12.2 REDAC Keycloak clients

In Keycloak language, clients refer to programs which want to authenticate against REDAC. Currently,
the following OpenID connect clients with authentification and authorization capabilities are regis-
tered:

• redaccess, served at https://redac.anabrid.com/api

• jupyterhub-wup, served at https://jupyter.redac.anabrid.com/

• Keycloak-internals such as the account console at https://auth.redac.anabrid.com/realms/
redac1-realm/account/

The following OpenID connect clients with public access only capabilities are registered:

• redac-gui, served at https://redac.anabrid.com/ui

12.2. REDAC Keycloak clients 44

https://redac.anabrid.com/api
https://jupyter.redac.anabrid.com/
https://auth.redac.anabrid.com/realms/redac1-realm/account/
https://auth.redac.anabrid.com/realms/redac1-realm/account/
https://redac.anabrid.com/ui

Part III

Developers manual

45

CHAPTER

THIRTEEN

INTRODUCTION

Welcome to the Software and Hardware Developers handbook of REDAC, the Reconfigurable Discrete
Analog Computer. Please ensure you have read the User manual before approaching this part of the
system documentation.

REDAC is primarily supposed to be used by engineers and scientists. Depending on your domain of
expertise, it may be sufficient for you to adopt your problems to the programming interfaces provided
by REDAC. This developer manual is primarily meant for people who want or need to know more about
the internals of REDAC analog and digital parts.

Please note that the level of access to the inner workings of the system depends on your particular le-
gal situation: Despite some parts of REDAC are open sourced (or supposed to be open sourced soon),
most of the system is neither open source nor open hardware. You, your institute or your company
may need to purchase a license, sign a non disclosure agreement (NDA) or take another other legal
action in order to gain access to the information of interest. Please contact your systems operator or
contact person for further information.

46

CHAPTER

FOURTEEN

ARCHITECTURE REFERENCE

This section provides a deep dive into REDAC architecture, suitable for developers and experienced
users who want to dig into the connectivity provided by the device. You should read the introductory
section on REDAC architecture first.

14.1 REDAC Hierarchy

REDAC stands for Reconfigurable Discrete Analog Computer. This means it is constructed using dis-
crete components, which are individual integrated circuits (ICs). These ICs house, for instance, mul-
tiple operational amplifiers (Opamps), serving as the fundamental building blocks for the electronic
analog computing paradigm employed by REDAC.

The system is designed with a highly modular, hierarchical, and repetitive architecture. At each hi-
erarchical level, components from the lower levels are arranged in a consistent, repetitive structure
while remaining individually replaceable. This design achieves a balance between high regularity for
efficient organization and substantial flexibility for customization. This modularity not only simplifies
maintenance and scalability but also enables tailored configurations to suit specific computational
needs. The following figure Fig. 14.1 provides an overview picture emphasizing on the hierarchical
and modular nature of REDAC.

The figure introduces a lot of concepts which are presented in detail in the following sections. Despite
REDAC is an analog-digital hybrid computer, the architectural description will primarily explain the
analog connectivity, apart from the description of digital circuits.

14.1.1 Single cluster

A cluster is the atom of the REDAC computer. The circuits at this level are alsor refered to as macro cell
in the literature. A cluster provides all-to-all connectivity between up to 16 computing elements. Cou-
pling is implemented by switching matrices under control of the attached digital computer, basically
resembling a crossbar switch.

Schematically, Figure Fig. 14.2 provides a way to visualize the interconnection matrix with real num-
bers representing coupling strengths. The cluster system matrix is the adjacency matrix for the in-
terconnection graph between the computing elements. The entries are referred to as weights. As a
special property, the system matrix does implicit summing which can be thought of as matrix multi-
plication linear algebra operations: 𝐶 in

𝑖 =
∑︀16

𝑗=0𝑀𝑖𝑗𝐶
out
𝑗 , 𝑖, 𝑗 ∈ [0, 16] where 𝐶 in

𝑖 is the input to
the 𝑖-th computing element, 𝐶out

𝑖 is its output, and the 𝑀𝑖𝑗 are the weights. The previous equation
describes monadic computing elements with one input and one output. The integrator is the only
monadic computing element in a cluster system. It computes the time integral over its time-varying
input signal. REDAC also provides another kind of computing elements, which are dyadic, i.e. feature
two inputs and one output: Multipliers. The multipliers implemented allow for full four-quadrant-

47

REDAC Manual, Release v1.0-NN-g6a89d8f

Fig. 14.1: Abstract hierarchy diagram of REDAC.

14.1. REDAC Hierarchy 48

REDAC Manual, Release v1.0-NN-g6a89d8f

Fig. 14.2: The single cluster system reduced to its system matrix. The entries shown are for a Lorenz
system.

14.1. REDAC Hierarchy 49

REDAC Manual, Release v1.0-NN-g6a89d8f

multiplication, i.e. each of the input values can take on values within the whole machine unit interval
[−1, 1].

Fig. 14.3: The single cluster as a closed-loop feedback circuit (turbine diagram).

Figure Fig. 14.3 shows a more detailed block diagram of the REDAC. It shows the closed loop analog
compute path. The labeled shapes in the diagram each represent a particular blocks (in bold letters,
referred to as “entities” in the REDAC terminology) and auxiliary elements (in normal letters). The fig-
ure does not show any digital control/configuration signal paths. Most notably, the U-, C- and I-blocks
together form the UCI matrix, which corresponds to the simplified interconnection matrix shown be-
fore in Figure Fig. 14.2. In contrast, Figure Fig. 14.3 emphasizes the internal fanout and fanin proper-
ties of the U- and I-blocks, resulting in a turbine-like appearance of this circuit representation.

The UCI matrix has 16 inputs, 16 outputs and 32 internal signal paths, each of which contains a co-
efficient element. These 32 paths are also called lanes and correspond to up to 32 nonzero entries
in the system matrix, yielding a maximum matrix density of 32/162 = 12.5. This corresponds to a
minimum sparsity of 87.5%.

14.1.2 mREDAC level

mREDAC stands for minimal or motherboard REDAC and is the smallest autonomous part of the sys-
tem. It contains one microcontroller (MCU) which has an Ethernet uplink and steers all digital signals
on the motherboard. The board hosts three clusters which share a single OP/IC line. The three clus-
ters are interconnected by means of one T block. This minimal self-standing analog hybrid computer
is completed with analog aquisition circuitery (eight ADC channels) as well as digital/analog external
I/O. This way, an mREDAC is basically the smallest standalone unit of REDAC.

14.1.3 iREDAC level

iREDAC stands for intermediate or interconnecting REDAC. At this level, seven mREDAC units are con-
nected to a single backpanel. Interconnection is enabled by means of several T blocks. Furthermore,
several digital busses on the back panel enable the orchestration and in particular synchronization
of the mREDACs. The iREDAC comes in a modular 19” rack-mounted blade-style appearance where
mREDACs can be conveniently accessed from the front for maintenance purpose.

14.1. REDAC Hierarchy 50

REDAC Manual, Release v1.0-NN-g6a89d8f

14.1.4 REDAC level

The whole REDAC system is composed by order of magnitude 10 iREDAC units. The large number
of microcontrollers are steered by a single supercontroller (in short SC). This term refers both to the
hardware (a single server grade computer) and a particular networking software which serves as sin-
gle end point for all analog parts of REDAC. From the hardware perspective, the REDAC further con-
tains Ethernet/IP administration (in the simplest case one switch and one router). From the software
perspective, REDAC contains a managament interface ontop of the SC which does job managament,
user authorization, encryption, provides API endpoints and custom software support such as com-
pute intensive circuit transpilation. For further information on the software architecture, please refer
to the Developer Manual.

14.2 Block reference

This section provides a reference of all function blocks within REDAC. Typically, a block is realized
as a DIMM form factor PCB. Furthermore, typically every block is also an entity in the concept of the
REDAC hybrid controller (see firmware documentation for details).

14.2.1 Cluster blocks

All blocks within a single cluster are part of the compute path and shown in figure Fig. 14.3.

M0 and M1 blocks
M-blocks are math blocks. Each can have up to 8 analog input and 8 analog output signals. Math
blocks contain various elements and allow digital configuration of these elements. In contrast
to classic analog computers, there are no summers available as explicit computing elements, as
summation is done implicitly in the I-block. This enhances the overall flexibility considerably.
For details see Math blocks.

U block
The output signals of these M-blocks are connected to the U-block which contains a 16 × 32
crossbar switch. Since the output signals of the M-blocks are voltages, this crossbar switch can
distribute one signal to several outputs at once. It therefore serves as a 16:32 fan-out, allowing
to distribute the input signals arbitrarily on 32 internal lanes within the UCI interconnection
matrix.

C block
These 32 output signals (still represented by voltages) are then fed into the coefficient block.
This contains 32 digitally controlled coefficient potentiometers with 11 bits resolution and an
additional sign bit. Thus, the C-Block implements one coefficient per lane by means of a multi-
plying DAC (a certain type of digital analog converter). These coefficients allow scaling of values
with factors in the interval [−1, 1]. The output of these coefficients are now currents instead of
voltages and feed the I-block.

I block
Following the C-block is the I-block. It, too, is a crossbar switch, this time with 32 inputs and 16
outputs. Working with currents, it is now possible to implicitly sum several inputs, thus elimi-
nating the need for explicit summers as computing elements. The 16 output lines of the I-block
are connected to the inputs of the computing elements contained on the M-blocks. The I-block
also features a programmable gain of either factor 1 or 10, allowing for a broader dynamical
range of the machine.

SH block
This block contains 16 sample and hold elements to correct offset errors of the computing ele-

14.2. Block reference 51

REDAC Manual, Release v1.0-NN-g6a89d8f

ments. It is transparent for the analog signal path and only serves for signal conditioning. It is
part of the sophisticated error correction techniques of the LUCIDAC.

14.2.2 mREDAC and iREDAC level blocks

CTRL block
This block contains the hybrid controller based on the MCU. It is responsible for setting up the
computing elements, coefficient potentiometers, crossbar switches. It also takes care of the
communication with the digital upstream computer (the client in a networking setting or host
in a USB setting). The control block physically holds the MCU as well as eight analog to digital
converters.

T block
This block is used for interconnecting clusters. The T stands for tee piece but also topology or
transparent. One jokes that it also stands for Tricky or T-Rex, given its highly regular yet unin-
tiuitive way of interconnecting a large number of analog signals. The T block is not part of a
single cluster. Each mREDAC has one T block and each iREDAC backplane has three T blocks.

Technically, a T-block provides 96 voltage coupled analog I/O that go to 24 analog switches.
Each switch is a 1-to-3 fanout or 3-to-1 fanin, depending on the information flow in the usage
mode.

14.2.3 Math blocks

Despite the implicit summing in the networking topology, all linear and nonlinear analog computa-
tion is performed on the Math blocks (M-blocks). REDAC math blocks are modular and can be ex-
changed, despite this requires opening the device.

A single cluster has slots for two math blocks. As of now there are two types of M-blocks available:

Integrator Math block MInt
contains eight integrators (each with one input with implicit summing, one output). Integrators
have an internal analog state (the current integration value), a digital state (IC / OP / HALT state
machine), and a hybrid state (initial conditions and time scaling factor 𝑘0).

Multiplier Math block MMul
contains four multipliers (each with two implicit summing inputs, one output). The four re-
maining outputs of this block are used as identity elements. They can be used for more flexi-
bility in the connection topology.

In normal conditions, one cluster contains eight integrators and four multipliers.

14.3 Digital Network

The REDAC digital network is actually made out of several networks:

• The multi-purpose digital bus within a single mREDAC. It has roughly 11 address lines and
roughly 5 data lines which are primarily used for SPI communication. This bus is extended to
the iREDAC backplanes.

• The REDAC-internal network used for communication between MCUs and SuperController
(never used to communicate directly between MCUs).

• Global (serial) mode lines steered by a single MCU which is currently USB-connected to the
SuperController.

14.3. Digital Network 52

CHAPTER

FIFTEEN

SOFTWARE

The REDAC’s software stack drives a distributed and heterogenous system of computers. Figure Fig.
15.1 shows a high level overview of this system.

Fig. 15.1: Abstract software diagram of REDAC.

The purpose of this section is to give a quick overview about the particular parts and to refer to their
respective documentation. The following sections will go top down.

15.1 Client Computers

On the customers or client computer, a small code is running, called the REST API client. REDAC has an
OpenAPI defined frontend which makes it easy to explore the interaction methods programmatically
and to generate client codes.

A reference implementation of this client is currently available in Python on the official python pack-
age index at anabrid-redac-client (https://pypi.org/project/anabrid-redac-client/). Getting this code

53

https://pypi.org/project/anabrid-redac-client/

REDAC Manual, Release v1.0-NN-g6a89d8f

started is part of the Getting started section in the users guide. This code is supposed to be open
sourced at Github. Further clients shall be generated in more programming languages in order to
make it easy to operate with REDAC from various settings.

15.2 Software on the SuperController

The SuperController is mastering the internal network (see also section Internal network in the opera-
tors guide). The name SuperController refers both to the physical server as well as to a major software
component which manages the embedded hybrid controllers. See also section Services in the oper-
ators manual for a description how to manage this software from a devops perspective.

15.2.1 Redaccess (Middleware)

At the interface between the SC and the REDAC public access is a lot of middleware codes which
are not meant to be released as open source. Most notable is the Redaccess code. It orchestrates
a dockerized infrastructure containing parts such as the Redis (https://redis.io/) and PostgreSQL
(https://www.postgresql.org/) databases or the RabbitMQ (https://www.rabbitmq.com/) broker. Fur-
thermore, part of the software stack is an OpenID provider (Keycloak (https://www.keycloak.org/)),
all running on standard server hardware and software, see the operator’s manual on Internal network
for details.

REDAC is equipped with a number of supplementary software for monitoring or enhancing user expe-
rience, such as a little landing website or a JupyterHub (https://jupyter.org/hub) instance. However,
none of these services are part of the core functionality and not neccessarily run on hardware directly
related to REDAC.

15.2.2 Pybrid Proxy

The REDAC-internal ethernet/IP network with its hunderds of microcontrollers is centrally managed
by the Pybrid Proxy software. The tasks of this software are the following:

• Application level proxy which provides a single entrypoint at TCP port 5732 speaking the
firmware JSONL-protocol, effectively resembling a “big virtual hybrid controller”. This means
it has to distribute incoming queries to the relevant microcontrollers and collect their replies
again.

• Doing all the bookkeeping and resolving logical device addresses (encoding their positiong in
the connectivity graph) to physical devices (encoding their actual addressing in the digital net-
work, i.e. by MAC and IP address).

• Zookeping: Monitoring and scanning available mREDACs or their microcontrollers, respec-
tively. Ensuring the relevant firmware is available and updating it when needed. Steering the
power and turning off parts of the system which are not needded. Monitoring their health for
instance by polling the temperature sensors available in the system.

• Organization of run groups by means of steering a system wide digital bus which is currently
USB-connected to the server.

Pybrid is written in asynchronous python and documented at https://anabrid.dev/docs/pybrid/. The
code forms the digital frontend to all analog circuitery. In regular use, this code should be the only
software which communicates with the embedded controllers directly.

15.2. Software on the SuperController 54

https://redis.io/
https://www.postgresql.org/
https://www.rabbitmq.com/
https://www.keycloak.org/
https://jupyter.org/hub
https://anabrid.dev/docs/pybrid/

REDAC Manual, Release v1.0-NN-g6a89d8f

15.3 Firmware on Microcontrollers

REDAC has a hierarchical design where on the lowest level (mREDAC level) there are microcontrollers
(MCU) with similiar firmware images. The following diagram Fig. 15.2 provides an overview of the
firmware architecture, with a focus on the communication.

Fig. 15.2: REDAC embedded hybrid controller firmware architecture

It is important to note that end users never directly communicate with the embedded controllers.
Even the direct contact to the SuperController is prohibited by the intermediate software.

Despite the MCUs are actually interchangable, REDAC is equipped with 600Mhz 32bit ARM Cortex-
M7 single core Teensy 4.1 development boards (https://www.pjrc.com/teensy/). The firmware is de-
veloped as a PlatformIO (https://platformio.org/) project and is huge: It contains more then 20,000
lines of code in dozens of folders. The firmware has been open sourced in the past at https://
github.com/anabrid/lucidac-firmware/ and is intensively documented at https://anabrid.dev/docs/
lucidac-firmware/sphinx/dirhtml/.

15.3. Firmware on Microcontrollers 55

https://www.pjrc.com/teensy/
https://platformio.org/
https://github.com/anabrid/lucidac-firmware/
https://github.com/anabrid/lucidac-firmware/
https://anabrid.dev/docs/lucidac-firmware/sphinx/dirhtml/
https://anabrid.dev/docs/lucidac-firmware/sphinx/dirhtml/

CHAPTER

SIXTEEN

USAGE MODES

The REDAC system is still in development, and thus are the usage modes. Despite we have a single
user mode in mind which solely goes via a single entrypoint, which does scheduling, load balancing
and the like, in special situations a number of different usage modes are supported in the moment. A
graphical overview in a block schema diagram is provided in Fig. 16.1 and subsequentialy discussed.

Fig. 16.1: The different inofficial user access variants for REDAC

16.1 Queue access

The primary access is indirected by the Redaccess (Middleware) via HTTP and REST. This way, ordinary
encrypted HTTPS can be used and the regular Authentification methods can be employed. Therefore,
this access method is the only one which is advertised in the REDAC user manual.

56

REDAC Manual, Release v1.0-NN-g6a89d8f

16.2 Immediate SuperController access

The immediate mode access to the Pybrid Proxy is technically only possible when being within the
Internal network. This is for instance possible via a VPN solution or with appropriate firewall rules
from outside. It is important to note that in this mode, no user authentification is applied, computing
time is not accounted and the TCP connection to the SuperController is not encrypted. Furthermore,
the protocol is no more HTTP but the specific JSONL protocol which is documented in the pybrid and
firmware documentations.

This immediate mode can be interesting for debugging, for experienced users, in particular single
system users. Users are suggested to use the pybrid python package to connect to the pybrid proxy.

16.3 Immediate Microcontroller access

In this variant, even the SuperController is short-circuited and users directly access the mREDAC-
embedded microcontrollers. This is possible if users are part of the Internal network (see previous
section). However, as a drawback to the immediate SuperController access, in this mode users can
not make use of the global synchronization line. That means that synchronized computations accross
more then a single mREDAC are not possible.

This kind of access is strongly discouraged whenever any part of the higher level software abstraction
is active, i.e. even if the pybrid proxy is active. If users want to make use of this access mode, they
should use the pybrid or lucipy sofware packages in order to address the mREDAC boards.

16.4 JupyterHub/Browser access

JupyterHub is a hosted computation software provided by Anabrid Operations. It is basically a hybrid
mode which allows all kind of uses. It combines a number of advantages:

• User does not need to install any software/development environment locally. He finds the open
source scientific programming environment jupyter readily available in browser, comparable to
Matlab.

• Regular queue access is possible

• However, also direct access is possible if neccessary since the instance has access to the REDAC
internal network.

16.2. Immediate SuperController access 57

CHAPTER

SEVENTEEN

HARDWARE

REDAC consists of a large number of custom printed circuit boards (PCB) designs made by anabrid.
The KiCad EDA (https://www.kicad.org/) software was used to produce the schematics and layouts.
The PCBs host carefully selected third party analog, digital or mixed signal chips. Next to PCBs, REDAC
consists of metal support structures in standard industry format (DIN subrack kits, IEC 60529) made
of aluminium or steel as well as industry-standard cable/connectors of various types.

The whole schematics of the REDAC computer require roughly 200 to 300 pages when being printed
out. The circuits are versioned, this versioning is carefully tracked in the firmware development so
there are lowlevel “drivers” for every piece of hardware developed (despite, of course, old hardware
revisions are typically deprecated).

Some REDAC circuits have international patents granted or pending.

Readers interested in the REDAC hardware should read the high-level description of Architecture Ref-
erence first. It is important to note that, despite being modular, the whole REDAC system should be
seen as a unity. This means that when dealing with a complex system such as REDAC from a hardware
perspective, one must assume leaky abstraction or a violation of seperation of concerns. For instance,
despite an iREDAC should be an independent unit standing for itself, in REDAC several iREDACs are
steered by a single digital SuperController and thus there is certain interdependence. The same might
be true due to shared power supplies, for instance.

For schematics access, please contact the person who is/was responsible for purchasing your REDAC
setup, your administrator/operator or the manufacturer, anabrid (https://anabrid.com/contact).

58

https://www.kicad.org/
https://anabrid.com/contact

CHAPTER

EIGHTEEN

APPENDIX

18.1 On the REDAC handbook

Most of the developers manual is about external documentation and material, in particular in the Soft-
ware section but also the Hardware section. In contrast, this section is all about the REDAC manual
itself, i.e. this documentation.

Technically, this is a documentation made with Sphinx (https://www.sphinx-doc.org/). This allows a
single reStructuredText (https://docutils.sourceforge.io/rst.html) base to be generated to interactive
HTML websites as well as printable Latex PDFs.

18.1.1 About the versions

This documentation is versioned because it is improved over the time. You are currently viewing the
document release v1.0-NN-g6a89d8f from Feb 19, 2025.

This version string is compatible to git describe (https://git-scm.com/docs/git-describe#_examples),
i.e. it reads something like v1.2.3-NN-g1234567. Here, v1.2.3 refers to the actual version whereas
the suffix -NN-g1234567 is only there if this version is actually unnamed and follows after 𝑁 commits
after the versioned commit. The actual git shorthash is then suffixed after the -g.

18.2 List of Abbreviations

REDAC
REConfigurable Analog Computer

Model-1
Analog Paradigm Model-1 Computer

INT
Integrator

INV
Inverter

MULT
Multiplier

DIMM
Dual Inline Memory Module (Form factor for PCBs)

DDR
Double Data Rate

59

https://www.sphinx-doc.org/
https://docutils.sourceforge.io/rst.html
https://git-scm.com/docs/git-describe#_examples

REDAC Manual, Release v1.0-NN-g6a89d8f

DDA
Digital Differential Analyzer

ACN
Analog Compute Node

CN
Compute Node

XBAR
Crosspoint-switch / Crossbar-switch

AD
Analog Digital

DA
Digital Analog

AC
Alternating Current

DC
Direct Current

DC/DC
DC-to-DC Converter (Power Supply)

DAC
Digital to Analog Converter

MDAC
Multiplying Digital to Analog Converter

ADC
Analog to Digital Converter

DPT
Digital Potentiometer

LSB
Least Significant Bit

INL
Integral Nonlinearity

DNL
Differential Nonlinearity

VDD
Drain Power Voltage

CMOS
Complementary Metal-Oxide-Semiconductor

NMOS
N-type Metal-Oxide-Semiconductor

PMOS
P-type Metal-Oxide-Semiconductor

18.2. List of Abbreviations 60

REDAC Manual, Release v1.0-NN-g6a89d8f

PCB
Printed Circuit Board (Electronic Circuit Board)

IC
Integrated Circuit or Initial Condition (depending on context)

OP
Operating Mode

HALT
Halting Mode

AMP
(Operational) Amplifier

OPA
Operational Amplifier

OPV
Operational Amplifier

SMD
Surface Mount Device

SOIC
Small Outline Integrated Circuit

TSSOP
Thin Shrink Small Outline Package

VSSOP
Very Thin Shrink Small Outline Package

GBP
Great Britain Pound

PT1
First Order System with One Pole

GND
Ground

RRO
Rail to Rail Output

RRI
Rail to Rail Input

CM
Common Mode

SR
Slewrate

GBW
Gain Bandwidth (Product)

MUX
Multiplexer

18.2. List of Abbreviations 61

REDAC Manual, Release v1.0-NN-g6a89d8f

SPST
Single Pole Single Throw

SPDT
Single Pole Dual Throw

SPI
Serial Peripheral Interface

M-Block
Math Block

U-Block
Voltage Block

C-Block
Coefficient Block

I-Block
Current Block

T-Block
Topology Block

FDT
Feedthrough

XTALK
Crosstalk

PPV
Perturbation Projection Vector

NP
Nondeterministic Polynomial (Complexity Context)

P
Polynomial (Complexity Context)

MPDE
Multi-Time Partial Differential Equation

PDE
Partial Differential Equation

pDGL
Partial Differential Equation (German: Partielle Differentialgleichung)

DMA
Direct Memory Access

HC
Hybrid Controller

CU
Control Unit

FlexIO
Flexible Input and Output Peripheral (NXP)

18.2. List of Abbreviations 62

REDAC Manual, Release v1.0-NN-g6a89d8f

GPIO
General Purpose Input and Output Pins/Ports

CLK
Clock Signal in Serial Interfaces (e.g., SPI)

MISO
Master In, Slave Out (SPI Data Line)

MOSI
Master Out, Slave In (SPI Data Line)

CS
Chip Select (SPI Signal Line)

CNVST
Conversion Start Signal of an ADC

PWM
Pulse Width Modulation

CMP
Comparator

18.3 Glossary

Backplane
A circuit board for housing and connecting carrier modules. The circuit board is the defining
element of the iREDAC.

Carrier Module
A circuit board with DIMM slots and a VG strip: accommodates functional blocks and the CTRL
block. This board is the defining element of the mREDAC and LUCIDAC.

Cluster
2x M-, 1x U-, 1x C-, 1x I-Block.

Carrier Module Prototype
1x Cluster and 1 CTRL-Block on a carrier module (=LUCIDAC, but not explicitly mentioned).

REDAC Carrier Module
3x Clusters and 1 CTRL-Block on a carrier module.

Functional Block
General term for M-, U-, C-, I-Block.

CTRL-Block
Control block: Interface between analog switching technology and digital computer.

Cluster
2x M-, 1x U-, 1x C-, 1x I-Block.

M-/U-/C-/I-Block
Mathematical or computing element, voltage coupling, coefficient, current coupling block.

Configuration, Circuit, Program
A data record that fully describes the analog interconnection of the REDAC. In the case of
mREDAC, this primarily includes the UCI configuration, MIntConfig, and UBlockAltSignals. The

18.3. Glossary 63

REDAC Manual, Release v1.0-NN-g6a89d8f

UCI configuration can be represented in different matrix-like conventions or as a list of routes.
See also specializations below, such as Irreducible Configuration or Cluster Configuration.

Interconnection Configuration
(As an alternative or German equivalent to “Configuration, Circuit, Program,” or at least a pre-
ferred term in the report) A specific interconnection between virtual or real computing ele-
ments. In current usage, it is unclear whether the configurations (e.g., initial values) of the
elements are included, but they actually should be.

Cluster Configuration
A restriction of the configuration, e.g., to a single cluster.

Setting, Adjustments (but not: Configuration)
(Typically user-configurable runtime) settings in the Teensy that affect only the functionality of
the Teensy itself and not the mREDAC configuration, i.e., the analog circuit. An example is the
IP address of the Teensy.

Note: A setting is something the administrator sets. A config is something the user sets.

Lane
One of 32 lines through the UCI block: Leads from a U-block output through a DPT into an I-
block input. As a data type, a lane is an integer in the range [0,31]. Also called a UCI lane.

The term “Lane Index” should be avoided; a lane always refers to an index.

Crosslane, short: Clane
One of 16 lines leading from the MBlock into the UBlock or from the IBlock back into the MBlock.

The term “clane index” should be avoided; a clane always refers to an index.

(Physical) Route
4-tuple: (uin, uout, cval, iout), where uin and iout are crosslanes and uout is a lane. cval is a
coefficient value (float in the range [-20,+20]). There are a maximum of 32 routes in the mREDAC.

The iout value in a route is optional, as it can also lead to a virtual output (see below).

Compute Element, Element Description
A type description of a computing element, i.e., it describes the name and inputs/outputs but
not the internal structure or behavior.

Element Name
By convention, the following computing element names are used in mREDAC: Mul, Int, Daq,
Extout, Extin, Const, Pot.

Physical Compute Element
A computing element in the M-Block or C-Block, currently Int, Mult, and Coeff. The term refers
to an abstract element, i.e., its type (structure/behavior) and not where it is located in the com-
puter.

Virtual Compute Element
A computing element that cannot be physically localized cleanly, currently including External
Inputs, External Outputs, DAQ Outputs, Constant Generators, and (arguably) Summators.

Stateful Compute Element
In general, compute elements are stateless. In mREDAC, only integrators and potentiometers
have an internal state, and their types contain information such as IC, k0, or coeff-value.

Source, Output Compute Element
A monadic compute element with no output, i.e., a compute element with an empty input-

18.3. Glossary 64

REDAC Manual, Release v1.0-NN-g6a89d8f

port list and an output-port list containing only one element, conventionally called “source.” In
mREDAC, these include External Input elements or constants.

All source elements in mREDAC are necessarily virtual computing elements.

Sink, Input Compute Element
The opposite of a source. In mREDAC, these are, for example, DAQ Output elements.

All sink elements in mREDAC are necessarily virtual computing elements.

Compute Element Port
Each computing element has a list of inputs and outputs. Entries in this list are called “ports.” By
convention, monadic compute elements have only an “in” and an “out” port. Dyadic compute
elements conventionally have “a” and “b” ports as outputs.

Assigned (Physical/Virtual) Compute Element
A computing element localized in the system: Typically, computing elements can be described
by an index (in mREDAC) or by a hierarchical device-tree-like structure (in REDAC).

Virtual/Physical Assigned Compute Element Port
A combination of the above concepts, meaning a localized port of a specific computing ele-
ment in the system. This concept also applies to virtual computing elements, which are simply
numbered.

Virtual Route, also: Logical Connection
An unrouted route that connects two virtual (typically assigned) compute element ports.

Logical Route
A virtual route after Pick & Place, meaning it has, in the case of mREDAC, one or more candidate
lanes assigned.

Auxiliary Block Configuration
Something like U-Block-Alt-Signals or MInt-Block configurations.

Irreducible Configuration
Description of the UCI matrix with as few degrees of freedom/variants as possible. This is either
a description as a route list or as three U/C/I lists, all of which are input-centric.

Input-Centric Configuration, Output-Centric Configuration
Describes different ways to represent (linearize) UCI matrices. In the U-Block, the adjacency list
of the U-Matrix is simultaneously an input-centric configuration and thus irreducible, as it is a
simple list. In the I-Block, it is an output-centric configuration and thus a list of lists that can be
represented as an input-centric one.

MBlock Setup
Describes which type of MBlocks sit in which MBlock slots. In the simplest case, this is a map-
ping of slot indices/coordinates to MBlock types.

Routing Error
Description of a result of a compilation step.

Physical Routing
Result of the P&R compilation step. The result includes not only physical routes but also a list
of potential routing errors and the U-Alt-Block allocation.

SendEnvelope and RecvEnvelope
Generic envelope types for the JSON protocol. They always have an id (string, should be a
UUID), a message type (string, from a list of supported messages), and a message type. A JSON
schema should exist that covers all possible envelopes. The RecvEnvelope is similar.

18.3. Glossary 65

REDAC Manual, Release v1.0-NN-g6a89d8f

Serialized Program, Exported Configuration
Dump of the data structure of a configuration in an appropriate data format such as
JSON/YAML/etc. This should also include version information for reloading.

Structure Description (!= Hardware Description)
The description of the fundamental mathematical structure of an analog computer. In REDAC,
for example, this includes the fact that signals pass through a coefficient and are then summed,
meaning only fully multiplied terms can be computed, such as a*x + a*y but not a*(x+y). The
structure description of an analog computer is static and does not change.

Required for the synthesis step of the compiler.

Behavioral Description (!= Hardware Description)
The description of the behavior of the analog computing elements and thus the analog com-
puter. This corresponds to the mathematical modeling of a computing element. For example,
an integrator is described by the temporal integral over its input signal. The behavioral descrip-
tion of a computing element is static and does not change.

Hardware Description (= Resource Description, = Hardware Configuration)
The list of all available computing elements (potentially implicitly defined by MBlock types)
and the available interconnections (potentially implicitly defined by types and positions on
backplanes, etc.).

18.3. Glossary 66

LIST OF FIGURES

1.1 Analog computer setup for solving 𝑥 = 𝑎(𝑏+ 𝑐) . 3

3.1 Interconnection matrix with implicit summing capabilities (Note: in fact this figure
shows a Single cluster). 11

6.1 Overview about the REDAC-internal services vs. the services operated by anabrid. . . 17

9.1 240V power distribution in REDAC . 28

10.1 Graph of the logical (internal) Ethernet of REDAC. See main text for explanation. 30
10.2 Mikrotik RouterOS Web Browser GUI screenshot . 33
10.3 X2Go session initialization screenshot, showing the configuration options. 36
10.4 Graphical XFCE session running on the REDAC login server, showing a web browser

and a terminal. 37

14.1 Abstract hierarchy diagram of REDAC. 48
14.2 The single cluster system reduced to its system matrix. The entries shown are for a

Lorenz system. 49
14.3 The single cluster as a closed-loop feedback circuit (turbine diagram). 50

15.1 Abstract software diagram of REDAC. 53
15.2 REDAC embedded hybrid controller firmware architecture 55

16.1 The different inofficial user access variants for REDAC 56

67

LIST OF TABLES

7.1 REDAC Credentials Overview . 21

68

EU-Konformitätserklärung

gemäß der Richtlinie 2011/65/EU (RoHS) vom 8.07.2011

.

Nr: AN-4-170000-194884

Hersteller/Bevollmächtigter 1):
anabrid GmbH
Am Stadtpark 3
D-12167 Berlin
E-Mail.: office@anabrid.com

Die alleinige Verantwortung für die Ausstellung dieser Konformitätserklärung trägt
der Hersteller (bzw. Installationsbetrieb): anabrid GmbH

Gegenstand der Erklärung: REDAC - digital programmierbarer Analogcomputer

Der oben beschriebene Gegenstand der Erklärung erfüllt die Vorschriften der

Richtlinie 2011/65/EU des Europäischen Parlaments und des Rates vom 8. Juni 2011

zur Beschränkung der Verwendung bestimmter gefährlicher Stoffe in Elektro- und

Elektronikgeräten.

Angewandte harmonisierte Normen insbesondere:

o EN 55032 (Funkstörungen)
o EN 61000 (Netzstörungen)

Angewandte sonstige technische Normen und Spezifikationen:

o RoHS-Richtlinie 2011/65/EU
o EMV-Richtlinie 2014/30/EU

Unterzeichnet für und im Namen von: anabrid GmbH

Ort/Datum der Ausstellung: Berlin / 27.01.2025

Angabe zur Person des Unterzeichners:

Lars Heimann, Geschäftsführer anabrid GmbH
(Name, Position)

Unterschrift:………………………………………………………………………………..

1) „Bevollmächtigter“ ist jede in der Union ansässige natürliche oder juristische Person, die von einem Hersteller

schriftlich beauftragt wurde, in seinem Namen bestimmte Aufgaben wahrzunehmen;

BIBLIOGRAPHY

[ulmannAP2] Bernd Ulmann: Analog and Hybrid Computer Programming, De Gruyter, ISBN
9783110662207, https://doi.org/10.1515/9783110662207 or amazong book listing
(https://www.amazon.de/dp/B0893VHTHL?ref_=cm_sw_r_kb_dp_zy7uFbNZ5HRN9&tag=httpwwwvaxmde-
21&linkCode=kpe)

70

https://doi.org/10.1515/9783110662207
https://www.amazon.de/dp/B0893VHTHL?ref_=cm_sw_r_kb_dp_zy7uFbNZ5HRN9&tag=httpwwwvaxmde-21&linkCode=kpe

INDEX

Symbols
(Physical) Route, 64

A
Assigned (Physical/Virtual) Compute

Element, 65
Auxiliary Block Configuration, 65

B
Backplane, 63
Behavioral Description (!= Hardware Descrip-

tion), 66

C
Carrier Module, 63
Carrier Module Prototype, 63
Cluster, 63
Cluster Configuration, 64
Compute Element Port, 65
Compute Element, Element Description, 64
Configuration, Circuit, Program, 63
Crosslane, short: Clane, 64
CTRL-Block, 63

E
Element Name, 64

F
Functional Block, 63

H
Hardware Description (= Resource Description,

= Hardware Configuration), 66

I
Input-Centric Configuration,

Output-Centric Configuration,
65

Interconnection Configuration, 64
Irreducible Configuration, 65

L
Lane, 64
Logical Route, 65

M
M-/U-/C-/I-Block, 63
MBlock Setup, 65

P
Physical Compute Element, 64
Physical Routing, 65

R
REDAC Carrier Module, 63
Routing Error, 65

S
SendEnvelope and RecvEnvelope, 65
Serialized Program, Exported

Configuration, 66
Setting, Adjustments (but not: Configuration),

64
Sink, Input Compute Element, 65
Source, Output Compute Element, 64
Stateful Compute Element, 64
Structure Description (!= Hardware Descrip-

tion), 66

V
Virtual Compute Element, 64
Virtual Route, also: Logical Connection,

65
Virtual/Physical Assigned Compute Element

Port, 65

71

	I Users manual
	Preface
	Getting started
	Requirements
	Installing the Python client
	Logging in
	Using the CLI

	Architecture Introduction
	REDAC internals
	The system matrix
	Available compuing elements

	Example Applications
	Further reading
	Anabrid Operations
	List of provided services
	User account creation
	Profile user data policy

	II Operators manual
	Introduction
	Intended Audience
	Confidential Credentials given at system handover
	Public Information on your REDAC installation

	Physical Setup
	Spatial requirements
	Safety Instructions for Physical Handling of the Device
	On-Device Indentifier Tags
	Moving
	Device Disposal

	Powering the system
	System Startup
	System Shutdown

	Internal network
	Initial network setup/access
	The Mikrotik Router
	Relevant settings
	How to access the REDAC Ethernet/IP Routing Switch
	Mikrotik default configuration

	The Super Controller Server
	Server Hardware
	Server Operating System
	Login and usage of the server

	How user access works from outside

	Services
	Relevant systemd units
	Docker service overview
	How to (re-)install the relevant software on the server

	Authentification
	Scope and capablities of Keycloak on REDAC
	REDAC Keycloak clients

	III Developers manual
	Introduction
	Architecture Reference
	REDAC Hierarchy
	Single cluster
	mREDAC level
	iREDAC level
	REDAC level

	Block reference
	Cluster blocks
	mREDAC and iREDAC level blocks
	Math blocks

	Digital Network

	Software
	Client Computers
	Software on the SuperController
	Redaccess (Middleware)
	Pybrid Proxy

	Firmware on Microcontrollers

	Usage modes
	Queue access
	Immediate SuperController access
	Immediate Microcontroller access
	JupyterHub/Browser access

	Hardware
	Appendix
	On the REDAC handbook
	About the versions

	List of Abbreviations
	Glossary
	European Union CE/RoHS Conformity Declaration

	Bibliography
	Index

