anabrid

lucidac
Nandnook

Analog Inputs

4 8 @ W
Al A2 A3
@ @

" Analog Outputs

P I

,,,,,,,,,,,,,,,,,,,,,,,, Y Here you can attach copies

of the labels which are per-
manently put on the back
of the LUCIDAC correspond-
ing to this manual. This

Device identification helps finding relevant data

and authentication quicker.

Never connect this device directly to the main power line. Do not apply volt-
ages greater than +2 V to this device’s front connectors. The application of
voltages greater than &2 V to this device’s front panel connectors may cause

A damage to property, personal injury, or death. Only connect the supplied

power supply to the power socket on the back of the device.
This device is designed for users aged 12 years and older. Users below the age
of 12 require adult supervision.

LUCIDAC User Manual

Copyright ©2024 anabrid GmbH
Jan 2025, V. 3.0 (third edition)

This work is licensed under the Creative Commons Attribution 4.0 International License. To
view a copy of this license, visit http://creativecommons.org/licenses/by/4.0 or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. “This Work” means
this booklet, the figures, code snippets shown, and the text.

anabrid™, LUCIDAC™, REDAC™ and the product logos are registered trademarks of anabrid
GmbH. For further legal information please see page 54.

anabrid GmbH,

Am Stadtpark 3,

12167 Berlin, Germany.
Phone: +49 30 6293047 20
Email: hello@anabrid.com
Web: www.anabrid.com

You can read the latest version of this document online at

https://anabrid.com/lucidac-user-manual.pdf

http://creativecommons.org/licenses/by/4.0
tel:+4930629304720
mailto:hello@anabrid.com
https://www.anabrid.com
https://anabrid.com/lucidac-user-manual.pdf

Contents

Preface

1 Introduction and Getting started
11 Requirements e e e e e e
1.2 Whatisinthebox L
1.3 Firsttimehardwaresetup e
1.4 Deviceconnectivity e e
1.5 TheLUCIDAC co-processordesigno,
1.6 Installing the lucipy referencecode

2 LUCIDAC architecture
2.1 Interconnectionnetwork
2.2 LUCIDACBIOCKS o o o e
2.3 Mathblocks
2.4 CircuitConfiguration
2.5 Coupling multiple LUCIDACs together
2.6 Coupling THATwith LUCIDAC oottt e e et e

3 Example applications

3.1

3.2
3.3
3.4

Lorenzattractor L e
ROsslerattractor.
Hindmarsh Rose Neuronal Bursting

VanderPoloscillator

© N o 0w w

10

Device administration and maintenance

4.1 Thelucigoadministrativecode.
4.2 Permanent settings and network configuration L.
43 Accesscontrol L L L
4.4 Deviceidentification
4.5 Systemlogsandusagemetrics
4.6 FirmwareUpdate e
4.7 Physicalmaintenance. e
4.8 Testingandcalibration oL

Embedded programming

51 Frontpaneldigitalconnectoro L L.
5.2 Software architecture and communicationinterface
53 Systemstates L e
5.4 Writingacompiletimeplugin
5.5 Extending the existing network protocol

Troubleshooting

6.1 Basicconnectivityandstartup L
6.2 Analogprogrammingproblems L.
6.3 Frequently asked questions (FAQ)

Resources and further reading

Legal documents
8.1 European Union CE/RoHS Conformity Declaration
8.2 Safety Instructions, Maintenance, Warranty and Liability

33
33
34
35
35
36
36
37
37

39
40
M
42
43
43

45
45
47
49

52

53
53
54

Preface

Welcome to Analog Computing

Analog computers differ substantially from current digital computers in that they do not work
by executing an algorithm in a step-by-step fashion. Instead they consist of a number of com-
puting elements, each capable of performing a certain mathematical operation such as sum-
mation, multiplication or time-integration. A program for an analog computer describes how
these computing elements are to be connected in order to create a model (an analogue) of the
problem to be solved.

A (very) simple problem like computing a(b + ¢) could be implemented on a classic digi-
tal computer as shown in figure 1. This straightforward algorithm requires six individual steps
to compute the desired result. Contrast this with the analog computer program shown in fig-
ure 2. This setup requires just two computing elements, one summer and one multiplier. The
summer is fed with the values b and ¢ while the multiplier is connected to the output of this
summer and to the value a.

a
LOAD A, RO
LOAD B, R1 c
LOAD C, R2 \
ADD R1, R2, Rl @—’®—’ x
MULT Re, R1, RO b/
STORE RO,
Figure1: Computingz = a(b+c) on adigital Figure 2: Analog computer setup for solving

computer z=ua(b+c)

Typically, values are represented by voltages or currents in an analog computer so that
only a single connection is necessary between computing elements.

The advantages of this analog computing approach are manyfold. Most notable are the
extremely high degree of parallelism (there are no central memory, no data dependencies,
no synchronisation points, etc., so that the computing elements work in full parallelism), the
resulting high speed of computation and the inherent very high energy efficiency of analog
computing.

While a digital computer can basically solve every problem given enough time and mem-
ory, an analog computer setup needs as many computing elements as there are operations
in the governing equations of the problem to be solved. A little bit more mathematically, one
can say that the size of a digital computer is constant while its time to solution typically grow
much faster than just linearly with the size of the problem (making many problems basically
intractable on classic digital computers). The size of the analog computer on the other hand
grows linearly with the problem size but, and this cannot be overestimated, the time to solu-
tion remains constant.

Classic analog computers were impressive systems, typically featuring a large patchpanel
with thousands of jacks, all connected to a vast number of computing elements, such as inte-
grators, summers, coefficient potentiometers, multipliers, etc. Programming these machines
was as much of an art as a science and was quite time consuming due to the hundreds or even
thousands of connections that had to be made manually. ([ULMANN, 2023/2] describes the his-
tory of analog computing in great detail.)

Nowadays, the patchpanel is a museum piece and the actual connection of the comput-
ing elements is done electronically, under the control of an attached digital computer; this
greatly simplifies the programming. Using appropriate libraries as shown below, the analog
computer can be used as a mathematical machine without having to understand the underly-
ing electronic implementation in detail.

Since the basics of analog computer programming are outside the scope of this user guide,
please refer to [ULMANN, 2023] for detailed information on the subject.

Section 1

Introduction and Getting started

The LUCIDAC is a fully software-reconfigurable analog-digital hybrid computer intended to be
used as a form of co-processor in conjunction with a digital computer. Its main area of ap-
plication is the exploration of analog and hybrid computing approaches in a variety of fields
including high-performance computing, life sciences, mathematics, hardware-in-the-loop se-
tups for (industrial) control purposes, education and training, and many more.

LUCIDAC is the first commercially available modern hybrid computer, and has eight inte-
grators with two software selectable time scale factors of ko € {10%, 10}, four four-quadrant
multipliers, 32 coefficient elements with 11 bits of resolution plus a sign bit each, and a vari-
able number of (implicit) summers. Using these computing elements it is possible to solve
eight coupled differential equations (DEQs) of 1** order or four DEQs of 2" order, etc. Thanks
to the multipliers, non-linear equations can also be easily implemented.

The LUCIDAC system contains a local microcontroller unit (MCU) responsible for the com-
munication with the attached digital computer, configuring the computing elements and their
interconnection, reading out values by means of analog-digital-convertes (ADCs), etc.

1.1 Requirements

The LUCIDAC system is designed for ease of use. However, the user should have basic pro-
gramming, ideally some experience with (scientific) Python, as this is the main software en-
vironment used here. Furthermore, some math knowledge is required (calculus, differential
equations). The minimum hardware requirements are:

« 100V - 240 V AC mains power connection for the supplied power supply.

« A notebook, desktop or server grade computer with ordinary IPv4 networking and/or a
USB2 interface. If the USB interface is to be used, root/administrator rights are very likely
to be required (see section 4.2 on page 34).

« The operating systems Apple Mac OS X™ (macOS 10.9 Mavericks or later), Microsoft Win-
dows™ (Windows 7 or later) or GNU/Linux are supported. In addition to this at least
Python 3.8 (released in 2019) is required for the reference client software lucipy.

It is recommended to use the device in a conventional “local” network with a DHCP server
and networking switch. Furthermore, a digital storage oscilloscope (DSO) is recommended
for convenience. However, note that the following points are not mandatory in order to use
LUCIDAC:

+ Operating the LUCIDAC system does not require an Internet connection. The LUCIDAC
firmware will never intentionally connect to another host if not instructed to do so. The
LUCIDAC will never “call home” without being told so.

» Connecting LUCIDAC over USB does not require USB-C or USB3 on the host computer.
Classical USB 2.0 is sufficient.

« A conventional local network is not needed but is strongly recommended if connecting
via TCP/IP. Technically, connecting to the LUCIDAC over TCP/IP neither requires a DHCP
server or networking switch. The LUCIDAC can be configured with a static IPv4 address.
Furthermore a cross-over direct connection can be made between any computerand the
LUCIDAC without special cables. However, the static IPv4 configuration requires basic
knowledge about IP networking (see section 4.2 on page 34).

« LUCIDAC provides internal methods for data acquisition (ADCs) which come in handy
with hybrid programming. However, using a DSO provides better user interaction, espe-
cially initially.

1.2

What is in the box

The LUCIDAC system is shipped with the following complement of items:

1.

The LUCIDAC itself, housed in a durable and easily stackable metal case (due to the low
power consumption no active ventilation/cooling is required).

. A universal power supply with a 24 V DC output. Please note that the user will need to

provide a country-specific mains lead with an IEC C13 connector.

. A collection of MCX-MCX and MCX-BNC cables for interfacing the LUCIDAC system to ex-

ternal signal sources, control equipment, oscilloscopes, etc.

. A master/minion digital port header as well as a suitable long flat ribbon cable for con-

necting multiple LUCIDACs together.

. An RJ45 Ethernet cable suitable for connecting the LUCIDAC system to your inhouse net-

work or to your computer (cross-over).

. An USB-C to USB-A cable suitable for connecting the LUCIDAC system directly to your

computer.

. This user guide.

1.3 First time hardware setup

We recommend connecting the LUCIDAC to an existing ethernet network. Ensure your end
device (notebook, desktop or server) is part of the same IP network. If this is the case, the
LUCIDAC device can be easily autodiscovered by the LUCIDAC client software within the same
multicast (broadcast) domain. This way, you do not have to find out its assigned IP address. If
you do not have an existing network available, you can make a direct USB connection instead.
The recommended steps are as follows:

1. Connect either Ethernet or USB or both.

2. Ifusinga DSO, connect the first few LUCIDAC outputs channels to your DSO inputs using
the enclosed MCX-BNC cables. If desired you can use the LUCIDAC OP output (this line
represents the mode of operation of the LUCIDAC and is a the main trigger source for
external deivces) as the trigger input for the DSO.

3. Power the LUCIDAC device on by flipping the power switch on the front.

The LUCIDAC system boots within about 10 seconds. The 8 LED array will light up and the sys-
tem is fully booted when the LEDs turn off again. Note that the system is passively cooled and
thus fan less and completely silent. In order to turn off the system again, just flip the power
switch. There is no need to perform any shut down procedure.

T~
Ethernet
. P

-[USB

S
P o
- D0 >
>>>
lucipy ~ MCX MCX
trigger signals
o

Figure 1.1: Recommended first time setup

1.4 Device connectivity

The LUCIDAC front (Figure 1.2) has a variety of analog and digital inputs and outputs, while the
back panel (Figure 1.3) has power and communication ports.

The digital part of the front panel has a 3.3V logic level, regardless of the MCX or pin con-
nector shape. The four binary status lines, available at their respective MCX connectors, are
shown in table 1.1.

The analog I/0 signals have a £2V volage range which translates to the &1 machine unit
domain of the system. The eight output channels are connected to particular system matrix
lanes and are typically used for connecting external measurement equipment, such as a DSO.
The eight input channels can be used as inputs to the system matrix, each replacing one lane.
(This will become clearer in section 2 when the LUCIDAC architecture has been described.)

The right side of front panel contains four MCX outputs connected to the built-in signal
generator. These signals can be either connected to MCX inputs on the front panel or used for
other purposes. Do not short circuit or overload these outputs, otherwise the signal generator

will be damaged.

/\

permanently damage the computing elements!
The inputs and outputs can be damaged by excessive external signal ampli-
tudes. The same is true for the pin header. Using the input/output ports re-

Never connect sources exceeding +2V to the MCX front panel jacks. This will

quires a thorough understanding of the signal levels involved.

IC
Initial Conditions

The system is in prepa-
ration mode and the
integrators load their
initial conditions. This
is normally an output
signal (see section 2.5
about master/minion
mode for alternative
modes).

opP
Operating

The system is in com-
puting mode and the
integrators are operat-
ing. This, too, is nor-
mally an output signal.

oL
Overload

An overload is detected
in the computing cir-
cuit. This is always
an output. Depending
on the current config-
uration of the system,
this condition can be
used to automatically
halt the current compu-
tation.

HALT
External halt

This is an input signal
and allows halting the
machine controlled by
an external, incoming
trigger signal.

Table 1.1: Front panel system mode LEDs and MCX sockets and their descriptions

Integration mode LEDs and MCX connectors for DSO triggers

Power switch
and indicator

Array of 8 LEDs
(user-programmable) 8x MCX Analog input

Signal generator
output (2x MCX)

O ° ° ° ° °
! R Analog nputs Ret sine
o858 oo o 'l6 B 5 68 | 6O

e © 0 0 0 0 0 O AQ Al A2 A3 A4 AS A6 A7
llll!!l!ll' o—6e—6e6e—1s——%_e—e——_e (a8
Digital Port Analog Outputs Aux @ Aux 1

lucidac anabrid

O))) °)

O

O

Digital bus (2x17 pin header)

8x MCX Analog output

Figure 1.2: Front connectivity

USB-C data-only serial terminal

(no power delivery)

Hardware identification chart
and default username/password

DAC output (2x MCX)

O °

O J

LAN

Barrel jack
24V DC power

RJ45 Ethernet (10/100mbit)

Serial number and QR code for

quick start without physical handbook

Figure 1.3: Back connectivity. For type plates (labels) see also front matter

digital

lines,
ethernet SPI, I2C A
nalog
CPU 4—Pp| MU | €—p | AFE
computer

Figure 1.4: CPU (central processing unit)/MCU (microcontroller unit) concept. AFE denotes the
analog front-end. SPI and 12C are serial protocols mainly used for communication between
integrated circuits.

1.5 The LUCIDAC co-processor design

The LUCIDAC achieves the goal of an analog co-processor with the help of an embedded micro-
processor which is connected via ethernet to an upstream computer (Figure 1.4). This creates
a heterogenous computing environment with a “big” CPU which is relatively far away from the
actual LUCIDAC system (also typically not real-time capable, both in terms of the connectivity
as well as with respect to the operating system used) and a “small” MCU which is real-time
capable but has relatively low computing power.

Exploiting the performance advantages of analog-digital hybrid algorithms requires clever
distribution of an algorithm between the CPU, the MCU, and the analog computing elements of
the LUCIDAC. This topic is discussed in more detail in section 5. A simpler way of programming
such a hybrid computer, referred to as client based programming, is described first. Depending
on the connection between CPU and MCU, different names for the roles of MCU and CPU codes
are commonly used:

1. When using ethernet, a classical client-server model is used. In this setting, the embed-
ded microcontroller within LUCIDAC acts as a network-enabled server. A variety of dif-
ferent client codes exist which run on the CPU. Multiple clients can connect to one server
at the same time. LUCIDAC allows locking the device to a single client.

2. When using USB, the USB host computer runs the “client code” with the MCU acting as
USB peripheral. There can always be only one “client” be connected via USB. Ethernet
and USB can be used at the same time.

In any situation, one CPU/client can be connected to multiple LUCIDACs at the time, regardless
of the transport method (Ethernet or USB).

1.6 Installing the lucipy reference code

For the LUCIDAC, client code implementations are available mainly for Python although other
languages will be supported in the near future. Here we focus on lucipy, which is currently the
reference protocol implementation in Python. It requires at least Python 3.8 and thus should
runon any (popular) computer platform built in recentyears. The open source codeis available
athttps://github.com/anabrid/lucipy. It can be installed with the following command:

shell@client $> pip install lucipy

Lucipy itself comes with no (mandatory) dependencies. Extensive documentation is available
athttps://anabrid.dev/docs/lucipy. The code features:

« asimple syntax to setup and edit LUCIDAC circuit configurations on a netlist level.
« Methods to import and export the LUCIDAC circuit to various other (file) formats.

« ASciPy-backed simulator/emulator of LUCIDAC based on an idealized mathematical mo-
del, suitable for rapid development, debugging and verification of idealized circuits.

« Aclient interface to steer the LUCIDAC operations, including data acquisition.

Typically, lucipy will find the network- or USB-connected LUCIDAC system automatically. If
this fails, you have to tell lucipy how to reach the system. To do so, lucipy used a notation
called endpoints. These are similar to a VISA lab device connection string. LUCIDAC endpoints
are written similar to URLs used in the web. See the lucipy manual for further instructions.
Section 6.1 contains a list of tips and tricks if you should encounter problems connecting to
your LUCIDAC system.

Lucipy abstracts only slightly from the underlying hardware. Computing elements are con-
nected manually, guided by the underlying system of differential equations to be solved. This
is quite similar to programming a digital computer in assembler. The example circuits shown
below demonstrate how it is done. An in-depth explanation of how to map a mathematical
problem to an analog computer circuit is outside of the scope of this handbook. For more
details on this refer to the references given in section 7.

10

https://github.com/anabrid/lucipy
https://anabrid.dev/docs/lucipy

Section 2

LUCIDAC architecture

Classic analog computers typically featured a large central patch panel consisting of thousands
of sockets by means of which computing elements were connected with each other using patch
cables. This was very cumbersome, took a long time to manually program, was error prone,
and did not allow for rapid program changes. Fortunately with the LUCIDAC system these patch
panels are finally relegated to museums where they belong.

Do not confuse the LUCIDAC front panel connectors with the patch panels of classical ana-
log computers. The LUCIDAC front panel serves only for analog and digital input and out-
put (1/0), while the computing elements are interconnected within the enclosure.

2.1 Interconnection network

LUCIDAC provides all-to-all connectivity between up to 16 computing elements. Coupling is
implemented by switching matrices under control of the attached digital computer, basically
resembling a crossbar switch.

Schematically, Figure 2.1 provides a way to visualize the interconnection matrix with real
numbers representing coupling strengths. The LUCIDAC system matrix is the adjacency matrix
for the interconnection graph between the computing elements. The entries are referred to as
weights. As a special property, the system matrix does implicit summing which can be thought
of as matrix multiplication linear algebra operations: C" = Z}io M;;C2", i,j € [0,16]
where C" is the input to the i-th computing element, C?! is its output, and the M;; are the

n

INTO +#1 -1

INT1 » |-2.8 0.1 5
INT2 0.26 +5
INT3
INT4
INT5
INT6

INT7 Interconn_ection
MUL® 1 Matrix

MUL1 1
MUL2 1
MUL3 1

(=]

DO
D

—
-

SRS

D2
ID3

@??@@@@@@@@@@@@@

Figure 2.1: The LUCIDAC system reduced to its system matrix. The entries shown are for the
Lorenz system (section 3.1)

weights. The previous equation describes monadic computing elements with one input and
one output. The integrator is the only monadic computing element in a LUCIDAC system. It
computes the time integral over its time-varying input signal. LUCIDAC also provides another
kind of computing elements, which are dyadic, i. e. feature two inputs and one output: Mul-
tipliers. The multipliers implemented allow for full four-quadrant-multiplication, i. e. each of
the input values can take on values within the whole machine unit interval [-1, 1].

An important property of the LUCIDAC interconnection is that it is CTCV (continuous time,
continuous variable). This means that the connections between computing elements within
a LUCIDAC system are not based on switched capacitors but instead on static (reconfigurable)
switching matrices. Although a switched capacitor network could have simplified the actual
hardware implementation, it would impose an artificial cutoff frequency on the overall analog
computer setup.

i =)

L
I/0 P

Figure 2.2: The LUCIDAC system as a closed-loop feedback circuit (“turbine diagram”)

Figure 2.2 shows a more detailed block diagram of the LUCIDAC. It shows the closed loop ana-
log compute path. The labelled shapes in the diagram each represent a particular blocks (in
bold letters, referred to as “entities” in the LUCIDAC terminology) and auxiliary elements (in
normal letters). The figure does not show any digital control/configuration signal paths. Most
notably, the U-, C- and I-blocks together form the UCI matrix, which corresponds to the simpli-
fied interconnection matrix shown before in Figure 2.1. In contrast, Figure 2.2 emphasizes the
internal fanout and fanin properties of the U- and I-blocks, resulting in a turbine-like appear-
ance of this circuit representation.

The UCI matrix has 16 inputs, 16 outputs and 32 internal signal paths, each of which con-
tains a coefficient element. These 32 paths are also called lanes and correspond to up to 32
nonzero entries in the system matrix, yielding a maximum matrix density of 32/16% = 12.5.
This corresponds to a minimum sparsity of 87.5%.

Figure 2.3 shows the most detailed block diagram within this document. Here, the inter-
nals of the different blocks are sketched and individual analog data lines are drawn, commu-
nicating one voltage or current, respectively. A textual description about the individual blocks
is given in the following pages.

13

[HU[en 7Yoo dalTal o o E Lo MU T NIl Reconfigurable analog computer

16x32 bitmatrix

[| Each of the 32 output channels (called lanes) can be
mapped on one of the 16 input channels (called cross-lanes,
in short clanes). This restriction has the following effects:

Math Block

Slot: Mo |1

) Only one bit set per column.

2) Maximal 32 nonzero bits in the overall matrix.

3) The matrix can be represented as a list of 32 integers,
each in range [0..16%.

Default configuration:
Integrator Block

2
Per Integrator: 4
5
7

|_| The U Block gets its name from tr;e voltage coupling
ge).

1 Input (physical symbol "U" for volta

1 Output

1 scale factor
either fast or slow
initial condition
within [-1,+1]

Slot: M1 |1

The lanes concept exists only within the U-C-I interconnect.

-

16:8
MUX [

The U Block provides a source for constant voltages,

which can be either +1, -1, +0.1, -0.1 or 0. If turned on,
the "constant source" scheme provides these constants only
on the last two clanes. By cleverly masking the incoming
[values from the MBlock, both constants and values can be used
either in the left or right side of the UBlock. It is the job
— of a compiler to hide this complex fact from the user.

Default configuration:
Multiplier Block

2
3
Per Multiplier: 4
5
6
7

2 Inputs

1 Output

First 4 inputs serve
as identity elements
for otherwise unused
outputs.

Ctrl Block

Microcontroller unit (MCU): 600MHz Teensy
4.1 ARMv7 system, master on the digital
bus (not depicted, reaching every block)

Front Panel

8x MCX output (always connected), 8x MCX input

8x Programmable LEDs

34 port di%ital m;l)ut/output pin connector
Programmable Signal Generator (sine/square/triangle)
2x DAC output (MCX)

— non-masked values masked by constants

NOURRWNRO|([NOUURWNEROS

non-masked values

masked by constants

32 coefficients

8 ADCs

14 bit
500kSPS

Each lane can be scaled with a constant coefficient in the
analog unit range [-1,+1]. Unused lanes have coefficients 0.

FP out
FP in

SH Bloc Blo 32x16 bitmatrix

closed loop

MO

The Sample and Hold
Block is a_transparent

Each of the 32 input channels (lanes) can be summed into
as many of the 16 output channels (called clanes). Summing

block for improving
offset errors.

happens because of the current representation of analog
values (physical symbol "I" for current).

Since distributing a current amongst different targets with

different input impedances has no simple mathematical
analogon, applications should consider the configuration

with similar restrictions as the lock, i.e. set only
one bit per column. This results in maximal 32 nonzero bits

in the overall matrix. The matrix can then be represented
as a list of 32 integers, each in range [0..16].

The I block can implement a gain of factor 1 pr 10 once per

lane, applied at the input of the I block.

M1

NOURRWNRER(|(([NOURWNELS

Figure 2.3: LUCIDAC detailed architecture

2.2 LUCIDAC Blocks

Mo and M1 blocks: M-blocks are math blocks. Each can have up to 8 analoginputand 8 analog
output signals. Math blocks contain various elements and allow digital configuration
of these elements. In contrast to classic analog computers, there are no summers avail-
able as explicit computing elements, as summation is done implicitly in the I-block. This
enhances the overall flexibility considerably. For details about the Math blocks, see Sec-
tion 2.3.

U block: The output signals of these M-blocks are connected to the U-block which contains
a 16 x 32 crossbar switch. Since the output signals of the M-blocks are voltages, this
crossbar switch can distribute one signal to several outputs at once. It therefore serves
as a16:32 fan-out, allowing to distribute the input signals arbitrarily on 32 internal lanes
within the UCl interconnection matrix.

C block: These 32 output signals (still represented by voltages) are then fed into the coeffi-
cient block. This contains 32 digitally controlled coefficient potentiometers with 11 bits
resolution and an additional sign bit. Thus, the C-Block implements one coefficient per
lane by means of a multiplying DAC (a certain type of digital analog converter). These co-
efficients allow scaling of values with factors in the interval [—1, 1]. The output of these
coefficients are now currents instead of voltages and feed the I-block.

I block: Following the C-block is the I-block. It, too, is a crossbar switch, this time with 32 in-
puts and 16 outputs. Working with currents, it is now possible to implicitly sum several
inputs, thus eliminating the need for explicit summers as computing elements. The 16
output lines of the I-block are connected to the inputs of the computing elements con-
tained on the M-blocks. The I-block also features a programmable gain of either factor 1
or 10, allowing for a broader dynamical range of the machine.

SH block: This block contains sample and hold elements to correct offset errors of the com-
puting elements. It is transparent for the analog signal path and only serves for signal
conditioning. It is part of the sophisticated error correction techniques of the LUCIDAC.

CTRL block: This block contains the hybrid controller based on the MCU. It is responsible for
setting up the computing elements, coefficient potentiometers, crossbar switches. It

15

also takes care of the communication with the digital upstream computer (the client in
a networking setting or host in a USB setting).

The Control block is not part of the compute path and therefore is not shown in figure 2.2. The
following additional elements are shown:

ADC: For device-internal data aqusition (DAQ), there are eight 16 bit analog-to-digital convert-
ers (ADC). They have access to all 16 M-block outputs by means of a separate 16:8 analog
multiplexer.

I/0 and FP: The Front panel allows to connect eight analog input and eight output signals.
The last eight of the overall 32 lanes are connected to these front panel output jacks.
The input signals can be fed into a LUCIDAC setup by means of eight analog switches. In
some parts of the documentation these signals are called ACL_IN/OUT (short for Analog
Cluster In/Out).

DAC and SGEN: The LUCIDAC also features a signal generator (SGEN) for square/triangle/sine
signals with adjustable frequency as well as two digital-to-analog converters (12 to 16bit
DAC). Outputs from the SGEN/DACs can be connected to the LUCIDAC computing ele-
ments by means of MCX-MCX cables.

2.3 Math blocks

Despite the implicit summingin the networking topology, all linear and nonlinear analog com-
putation is performed on the Math blocks (M-blocks). LUCIDAC math blocks are modular and
can be exchanged (although this requires opening the device, see Section 4.7). LUCIDAC has
slots for two math blocks. As of now there are two types of M-blocks available and the machine
is by default equipped with one of each type:

Math block M@ contains eight integrators (each with one input with implicit summing, one
output). Integrators have an internal analog state (the current integration value), a dig-
ital state (IC / OP / HALT state machine), and a hybrid state (initial conditions and time
scaling factor ko).

Math block M1 contains four multipliers (each with two implicit summing inputs, one output).
The four remaining outputs of this block are used as identity elements. They can be used
for more flexibility in the connection topology.

Allin all, one LUCIDAC contains eight integrators and four multipliers.

2.4 Circuit Configuration

In LUCIDAC Termiology circuit configuration means the set of values required to fully deter-
mine the configuration (degrees of freedom) of the blocks mentioned in the previous subsec-
tion. Users are not expected to deal with this file format: It is produced automatically by a
higher level netlist programmed, for instance, within the lucipy code. Nevertheless, an exam-
ple circuit configuration is provided for the Lorentz system (section 3.1). The data structure is
represented in the popular JSON serialization (see https://www. json.org) whichis also used
in the LUCIDAC networking protocol.

The outer level data structure resembles the hierarchical block structure of LUCIDAC. All
configuration options are scoped to the relevant block. LUCIDAC only has a few “global” prop-
erties which apply system-wide. An example are the mode lines for steering the computation
(IC/OP/HALT), they are not part of the configuration.

{
"/0": {

"/UT:

"outputs”: [

o, 2, o, 1, 1, o, o, 8, 1, 9, 2, null,

null, null, null, null, null, null, null, null, null, null, null, null,
null, null, null, null, null, null, null, null]

nrers g
"elements”: [
1
1
-0.28
9.5

S

.2666

()
ESEESEISEGEISITS SRS
[SASESESRSESES RS

ESIESS IS IRGS IS YA

—

e

"I {

"outputs”: [
[4, 5
e, 7,8
[9, 10

[T T S i

[e M W W |

17

https://www.json.org

[o 1,
1 1,
[2 1,
[3 1,
L B[P
L 1,
L AP
L]

"upscaling”: [
false, false, false, false, false, false, true , true , false, true ,
false, false, false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false, false, false,
false, false

]

1

"/MO": {

"elements"”: [

{"k": 10000, "ic":
{"k": 10000, "ic":
{"k": 10000, "ic":
{"k": 10000, "ic":
{"k": 10000, "ic":
{"k": 10000, "ic":
{"k": 10000, "ic":
{"k": 10000, "ic":

RS IEGS REGS RGNS IS
S
-

]
¥s
"M (3

Note that the above listing is intentionally not complete: It does not include all circuit
configuration options available but only a minimum relevalt for a typical application. For
a full list of configuration options, please refer to the firmware documentation (section 5).

2.5 Coupling multiple LUCIDACs together

Generally, digital computers can solve arbitrarily large problems given there is enough time
and memory available. In contrast to this, analog computer have to grow linearly with the
problem size. The advantage of this is that an analog computer exhibits constant times to
solution (see for instance [KOPPEL et al, 2021] and references therein). Computational circuits
in LUCIDACs can grow beyond a single LUCIDAC by making use of the front panel inputs and
outputs. This way, a number of LUCIDACs can be connected together, thus forming a larger
machine. Such a system is still reconfigurable with respect to its LUCIDAC nodes but not with
respect to the connections between these systems which are done using the MCX connectors
on the front panel. Connecting several LUCIDACs to form a larger system poses a synchroniza-
tion problem since control of the IC/OP modes as well as ADC acquisition (if applicable) must
happen synchronously.

2.5.1 Global mode line and Master/minion mode

LUCIDAC supports several methods for synchronization which meet the timing requirements
of its 1 MHz bandwidth computing elements. This section describes one of them; the digital
line synchronization in a master/minion setup. In this mode of synchronization, one device
(master) controls the network’s mode while all other systems (minions) are listening by effec-
tively turning their IC/OP lines into inputs (cf. section 5.1 for more information regarding the
front panel).

The OP/IC lines can be connected either using the MCX front panel connectors or the digi-
tal pin headers of the systems. For more than two LUCIDACs, MCX/BNC T-pieces or something
similar are required. Custom headers and flat ribbon cables to simplify this will be provided in
the future. The digital ports should be connected when the participating devices are powered
off. From the software side, all minion LUCIDACs should receive their proper minion configu-
ration right after startup. With lucipy, minion mode is activated with these two lines of python
code:

minion = LUCIDAC("tcp://hostname-of-minion-lucidac")
minion.manual_mode("minion") # activates minion mode

Such a system should always be controlled and triggered via the master LUCIDAC. The minion
systems should not be controlled by any other means in such a setup. Lucipy provides (at

19

Ethernet
>>>
1UC1py ° g o g -
= —c

GND |
sync.crk /mopefc 4—ooooo-oo-o i -4
sync_1po /mMmopgop —--—u-v-— 1

Figure 2.4: Combining multiple LUCIDACs into a larger system requires three digital wires avail-
able from the front panel as well as ethernet connections. The analog interconnections (MCX-
MCX) are not shown.

time of writing) rudimentary support for such modes with the LUCIGroup class. Note that with
master/minion mode, the current version of the firmware does not support data acquisition

on the minion nodes.

2.5.2 LUCIDAC group coupling

Another way to synchronize LUCIDAC runs is an custom tailored serial synchronization protocol
which is physically exposed on the front panel pin header by means of two lines separate from
the OP/IC lines discussed previously. This coupling is incompatible with the master/minion
mode described so far. Technically, it allows a set of LUCIDACs to be partitioned dynamically
at run time into several groups which are synchronized independently. This is the first step
towards programmable connections between LUCIDACs, planned for future members of this
product family.

This method, too, requires a “group leader” which triggers the computing run after all fol-
lowers were set to “armed” mode. This interconnection method is currently favoured in the
ongoing development of synchronization mechanisms. It also supports distributed data ac-
quisition with minimal jitter (time spread between sampling points). LUCIDACs ship with tiny
headers exposing these two lines in order to make it simple to chain LUCIACs together. How-
ever, at the time of writing there is currently no software support for this method.

Note that both coupling variants require three digital lines connected to all systems (IC /
OP /GND or SYNC ID / CLK / GND), c.f. Figure 2.4.

20

2.6 Coupling THAT with LUCIDAC

The Analog Thing (THAT) is an entry-level classical analog computer with a patch panel (open
source/open hardware by anabrid, see https://the-analog-thing.org for details). Con-
necting THAT and LUCIDAC can be useful for some applications which profit from the patch
panel and the interactivity provided by THAT. However, keep in mind that THAT computing
elements have lower bandwidth and resolution, compared to LUCIDAC.

The master/minion mode is similar to coupling two or more The Analog Things (THATSs).
Connecting a THAT to a LUCIDAC is simple from a digital point of view since the logic levels are
compatible. In order to couple a LUCIDAC (digital port) to a THAT (hybrid port), three connec-
tions are required (GND, IC and OP). See section 5.1 for the LUCIDAC digital front pinout and for
instance https://anabrid.com/that-hybrid-port-desc.pdf for a description of the THAT
hybrid port.

For connecting analog signals, the four THAT RCA jacks can be used. THAT has up to four
analogl/Osignals, labelled X, Y, Zand U. The physical connection is easily realized, for instance,
with an RCA-BNC adapter and the supplementary BNC-MCX cables of LUCIDAC. Note that LUCI-
DAC front panel analog signals are directional. Therefore, when interconnecting two LUCIDACs
itis obvious that two inputs or two outputs should not be short-circuited. In contrast, on THAT,
the direction of the RCA jacks is dictated by the connections made on its patch panel.

Note that THAT RCA jack levels are +1V while LUCIDAC MCX levels are £2V. Thus using
analog values outside of the interval [—0.5,0.5] on the LUCIDAC side feeding the THAT will
result in erroneous values on the THAT. However, misuse in terms of out of range values will
not damage either LUCIDAC or THAT.

21

https://the-analog-thing.org
https://anabrid.com/that-hybrid-port-desc.pdf

22

“J™ TELEDYNELECROY

() Fie § Vertical |+ Tinebase | I Trgger | @ Display | # Cumors |) Measure | @ Malh | == Analysis
iv | | 1

500 my

owaswo OB ER@ER

Scale Difset - Coupling =
SR [l | M
eI i

Actions for trace C3 L St

=]

High Definition Oscilloscope
12-bit Resolution

athttps://github.com/anabrid/lucipy/tree/master/examples
All python filenames given are relative to this directory.

https://github.com/anabrid/lucipy/tree/master/examples

Section 3

Example applications

This section shows example applications for lucipy client side programming.

How to run an example

For the sake of brevety, all examples are written without explicit LUCIDAC endpoints. That
is, we write LUCIDAC() instead of, e.g. LUCIDAC("tcp://192.168.1.234"). Conventionally,
without a given endpoint lucipy will test for the LUCIDAC_ENDPOINT environment variable. If
not given, it will carry out an auto-detection in order to find LUCIDAC hardware to run the
commands on. If there are multiple LUCIDAC systems in a subnet, explicit endpoints will be
required to address individual systems. Consult section 6.1 in case of questions how to build
up a connection to the system. The simplest way to reproduce the examples on your system is
a setup as proposed in figure 1.1 on page 6. Put the oscilloscope in automatic or trigger mode
and just execute an example file. The shortest way to do so, without any prior installation, is:

shell@client $> git clone https://github.com/anabrid/lucipy.git

shell@client $> cd lucipy/examples/booklet

shell@client $> export PYTHONPATH=../.. # only if you haven’t done pip install

shell@client $> export LUCIDAC_ENDPOINT="tcp://192.168.123.123" # if applicable
shell@client $> python lorenz.py

24

3.1 Lorenz attractor

This example shows the Lorenz system. This is a set of three coupled first order differential
equations for the variables x(t), y(t), z(t). The code presented implements a rescaled ver-
sionasinhttps://analogparadigm.com/downloads/alpaca_2.pdf. Acircuitis shown in fig-
ure 3.1. The system has chaotic behaviour and the (x, y) evolution and phase space computed
by lucidac is shown in figure 3.2.

Example listing: lorenz.py

from lucipy import LUCIDAC, Circuit

a=1.0

b=2.8

c =2.666 / 10

1 = Circuit() # Create a circuit

mx = l.int(ic = @.1) # Allocate an integrator with initial condition
my = 1.int() # two more integrators

mz = 1l.int()

xz = 1.mul() # Allocate two multipliers

xy = 1.mul(Q)

l.connect(mx, xz.a) # Product -x * -z = xz
1.connect(mz, xz.b)

1l.connect(mx, xy.a) # Product -x * -y = xy
1.connect(my, xy.b)

1.connect(my, mx, weight = -a)
1.connect(mx, mx, weight = a)

1.connect(mx, my, weight = -b)
1.connect(xz, my, weight = -5)
1.connect(my, my, weight = 0.1)
1.connect(xy, mz, weight = 5)

1.connect(mz, mz, weight = c)

1.probe(mx, front_port=0) # Connect a DSO to
1.probe(my, front_port=1) # ports @, 1 or 2

—

.probe(mz, front_port=2) # to see the output!

hc = LUCIDAC()
hc.set_circuit(l)

hc.set_op_time(unlimited=True)
hc.start_run()

25

https://analogparadigm.com/downloads/alpaca_2.pdf

Figure 3.1: Lorenz circuit, empty potentiometers are weight= 1

6.25Msa/s

A ﬂ Norm

1.00Mpts

WAIT (H /j10.00ms/ [) jo.00s

Waveform View
i -

40ms -30ms -207T

1 200v/
0.00v

X | XY(CH1, CH2)
o LIRS B

ova =[]
X 100.00mV 5| € EHE
Math

W= X

4V

M e
M2 M4

V-1

v

6V}
=< 1
v =" |

LXI 9= Rt

Figure 3.2: Example display on an attached oscilloscope of the Lorenz attractor

26

3.2 Rossler attractor

The Rossler attractor is another nonlinear and chaotic ODE example. The code presented here
is equivalent to the scaled version presented in https://analogparadigm.com/downloads/
alpaca_1.pdf. See figure 3.3 for the output of this program on a digital oscilloscope.

Example listing: roessler.py

from pylab import *
from lucipy import Circuit, LUCIDAC

r = Circuit() # Create a circuit

X = r.int(ic = .066)

my = r.int(Q)

mz = r.int(Q)

prod = r.mul()

const = r.const(1)

r.connect(my, x, weight = -0.8)

r.connect(mz, X, weight = -2.3)

r.connect(x, my, weight = 1.25)

r.connect(my, my, weight = -0.2)

r.connect(const, mz, weight = 0.005)

r.connect(prod, mz, weight = 10) # We need a weight of 15, split up
r.connect(prod, mz, weight = 5) # into two lanes due to max. coeff = 10
r.connect(mz, prod.a, weight = -1)

=

.connect(x, prod.b)
.connect(const, prod.b, weight = -0.3796)

-

r.probe(x, front_port=5)
r.probe(my, front_port=6)

r.measure(x)
r.measure(my)

hc = LUCIDAC()
hc.set_circuit(r)

hc.run(op_time_unlimited=True)

27

https://analogparadigm.com/downloads/alpaca_1.pdf
https://analogparadigm.com/downloads/alpaca_1.pdf

62.50MSa/s 1.00Mpts E
AUTO (Hy.0omsr | LA I Norm [) 0008 T 761.93mV A £ -

Waveform View Wy = X | XY(CH1,CH2)
[T T ETTTR, T ; IRRARF 3 T !

ZY 3V — g

1.00v/
0.00v LXI <G+ Rent
M2 M4

Figure 3.3: Example display of the Roessler attractor (output of previous listing)

28

3.3 Hindmarsh Rose Neuronal Bursting

Thisexampleimplements a rather intricate mathematical model of neural bursting and spiking

dueto Hindmarsh and Rose, see https://analogparadigm.com/downloads/alpaca_28.pdf.

The output is shown in figure 3.4.

Example listing: hindmarsh_rose.py

from lucipy import Circuit, LUCIDAC

hr = Circuit()

mx
y
mz
X2
mx3
[«

hr.
hr
hr
hr.
hr.

hr.
hr.

hr
hr.

hr.
hr.
hr

hr.
hr.
hr.
hr.
hr.
hr.

hc
hc.

hc.

29

hr.
hr.
hr.
hr.
hr.
hr.

int(ic = 1)
int(ic = 1)

Create a circuit

int(slow = True, ic = -1) # set k@ time scale 100 times slower then others

mul()
mul()
const()

connect(c, mx)

.connect(mx3, mx, weight
.connect(x2, mx, weight

connect(y, mx, weight
connect(mz, mx)

connect(mx, mx3.a)
connect(x2, mx3.b)

.connect(mx, x2.a)

connect(mx, x2.b)

connect(x2, y, weight
connect(c, vy, weight
.connect(y, y)

connect(mx, mz, weight
connect(c, mz, weight
connect(mz, mz, weight

1.333)
-0.066)

-0.4)
0.32)
0.1)

probe(mx, front_port=5, weight=-1) # switch signs of output channel
probe(y, front_port=6)
probe(mz, front_port=7, weight=-1)

= LUCIDAC()
set_circuit(hr)

run(op_time_unlimited=True)

https://analogparadigm.com/downloads/alpaca_28.pdf

TD @

Waveform View
-

. =g
10.00ms/ | | A ﬁsm:?ris 1.00Mpts | (1 10,005 T @ 13v A< =
a

[

b\ /i

1.00v/ 2 | 1.00v/
0.00v 0.00v

Figure 3.4: Example display of the Hindmarsh Rose model (output of previous listing)

30

3.4 Vander Pol oscillator

This example implements a classic amplitude stabilized oscillator first described by vAN DER
PoL. We also demonstrate how to carry out LUCIDAC-internal data acquisition instead of using
an external DSO. See figure 3.5 for the qualitative result.
Example listing: vdp.py
from lucipy import Circuit, LUCIDAC
import numpy as np, matplotlib.pyplot as plt

eta = 4 # tunes the nonlinearity, value @ results in an harmonic oscillator

vdp = Circuit()

mdy = vdp.int()

y = vdp.int(ic = 0.1)

y2 = vdp.mul()

fb = vdp.mul(2)

c = vdp.const()

vdp.connect(fb, mdy, weight = -eta)
vdp.connect(y, mdy, weight = -0.5)

vdp.connect(mdy, y, weight = 2)

vdp.connect(y, y2.a)
vdp.connect(y, y2.b)

vdp.connect(y2, fb.a, weight
vdp. connect(c, fb.a, weight
vdp.connect(mdy, fb.b)

-1)
0.25)

vdp.probe(mdy, front_port=5)
vdp.probe(y, front_port=6)

vdp.measure(mdy) # register variables for internal DAQ
vdp.measure(y) # up to eight variables/channels can be registered

hc = LUCIDAC()
hc.set_circuit(vdp)

run = hc.run(ic_time_us=200, op_time_ms=6)
data = np.array(run.data())

time = np.linspace(@, 6, num=data.shape[@])
plt.title("LUCIDAC-internal_data_aquisition:_Van-der-Pol_oscillator")
plt.plot(time, datal:,0], label="-\dot_y")

plt.plot(time, datal:,1], label="y")

plt.axhline(@, color="black")

plt.xlabel("Time_[ms]")

plt.legend()

plt.show()

31

LUCIDAC-internal data aquisition: Van-der-Pol oscillator

1.04 — -y
L /
0.0 >&/
)
~1.04

5 6

0 1 2 3 4
Time [ms]

Figure 3.5: Van der Pol oscillator evolution acquired with ADCs, plotted with pyplot

32

Section 4

Device administration and maintenance

LUCIDAC is primarily meant to be used in a IPv4 network. From an administration point of view,
this raises a number of issues, in particular about usage, monitoring, maintenance and access
control. These topics are covered in this section.

4.1 The Lucigo administrative code

For IT administrators a dedicated open source administration software called Lucigo is pro-
vided and can be downloaded from https://github.com/anabrid/lucigo. Itis meant to be
used as a terminal program (standalone CLI tool) and does not require a Python installation.
Executables are available for MS Windows, Mac OS X and GNU/Linux at https: //github.com/
anabrid/lucigo/releases. Both Lucigo and Lucipy are clients for LUCIDAC, however lucigo
has a focus on device administration while lucipy has a focus on user-level device usage. Both
codes respect the LUCIDAC_ENDPOINT environment variable and can autodetect devices via
USB or zeroconf multicast calls.

The code snippets shown below assume that the endpoint is suitably set with an envi-
ronment variable or is autodetected. That means whenever we write $> lucigo foo bar this
should be substituted by $> LUCIDAC_ENDPOINT="tcp://120.121.122.123" ./lucigo foo bar oOr

$> ./lucigo --endpoint="tcp://120.121.122.123" foo bar . Note that typically you have to write
$> ./lucigo instead of $> lucigo in case you have the executable in the local directory and
not in the system path. Furthremore, depending on what you have downloaded you have to
adopt the name of the executable, forinstance $> ./lucigo-amd64-win.exe .

33

https://github.com/anabrid/lucigo
https://github.com/anabrid/lucigo/releases
https://github.com/anabrid/lucigo/releases

4.2 Permanent settings and network configuration

LUCIDAC is designed in a way that all circuit configuration is volatile and is intentionally lost at
power off/restart. In contrast, there is a small part of device configuration which is permanent.
This is referred to as settings and primarily covers the device network settings and the user/-
password database. The permanent device configuration can be easily read with the following
command:

you@host $./lucigo get net
auth.enable_auth = true
auth.enable_users = true
auth.users[0].name = "admin”
auth.users[0].password = "-redacted-
auth.users[1].name = "user”
auth.users[1].password = "-redacted-
net.enable_dhcp = true
net.enable_ethernet = true
net.enable_jsonl = true
net.enable_mdns = true

net.hostname = lucidac-16-0A-15
net.jsonl_port = 5732

net.mac = @4-E9-E5-16-0A-15
net.static_dns = 8.8.8.8
net.static_gw = 192.168.1.1
net.static_ipaddr = 192.168.1.100
net.static_netmask = 255.255.255.0

"

"

Changes can be made with the lucigo net-set command. For instance, the following com-
mand disables the DHCP client mode and sets a fixed IPv4 address:

shell@client $> lucigo net-set ip.local=10.0.0.3 dhcp.active=false

Note that changes always apply only after restart, which can be invoked by 1ucigo sys-reboot .
Structured data can also be extracted or fed in using the JSON representation from standard
input,i.e. $> lucigo query net-set < input.json . Thus, the permanent system settings can be
dumped to afile and easily rewritten if required.

For further usage patterns of lucigo, please run $> lucigo --help or refer to the documen-
tation within the code repository at https://github.com/anabrid/lucigo.

34

https://github.com/anabrid/lucigo

4.3 Access control

We believe that network-enabled equipment should, by default, be equipped with capable but
basic authentication in order to improve IT security and to avoid intentional and unintentional
misuse. Authentication also can avoid pitfalls with respect to device identification if multiple
devices are available in a network.

LUCIDACs are shipped with a simple application-level authentication/authorization sys-
tem. By default, there are two users called user and admin with default passwords provided
onthe back plate label. Itis possible to reset the device to these default passwords. Additional
users can be created (the number is only limited by the MCU EEPROM size, which should allow
up to 10 user-password combinations).

The authentication scheme in the version 1.0 firmware is very simple and provides a three-
step group/authorization structure which allows different protocol method calls for different
groups:

1. Anonymous/guest can ask for device identification.

2. Logged in users can use the device (read/write circuit configuration, data acquisition
access, run management access, read system logs).

3. Administrator-level users have full access (read/write permanent network configuration,
update, device reboot, firmware upgrade, load plugins).

Since anybody with physical access to a device can bypass security barriers only TCP/IP re-
quests require authentication. The USB serial console always provides administrator-level ac-
cess without a login being required.

The authentication system can be completely disabled by the administrator. This makes
device usage more practical in trustworthy networks. With lucigo, the relevant command to
disable the authentication system is:

shell@client $> lucigo net-set auth.enable_auth=false

4.4 Device identification

From the vendor point of view, the following information isimprinted onto the microcontroller
flash memory: Serial number (a short integer), Serial UUID, Manufacturer name, default user

35

and admin passwords. This information is assigned by anabrid at fabrication time. Further-
more, the microcontroller holds its one-time-programmed MAC address and USB Serial ID.
This information is assigned by the MCU fabrication. All this information is also printed onto
the serial plate stickers on the back of the device (cf. figure 1.3 on page 8 as well as the front
matter of this booklet). In order to simplify the management of multiple devices in a single
network, this information can be queried over network with the $> lucigo query sys_ident
call.

4.5 System logs and usage metrics

The system holds a volatile (in-memory) log file which is helpful to trace startup problems and
usage mistakes. The log is implemented in a ring buffer with limited size. That means if you
want to read out the startup log, you should do this as the first operation after startup. The
log can be read out with the $> lucigo query sys_log call. In some situations, the log also
provides useful information as a side-channel where calls have an insufficient error reporting.

The LUCIDAC firmware also locally tracks simple usage counters for evaluation purposes.
They can be accessed with the $> lucigo query sys_stats call and provide insight of the ma-
chine usage since startup.

4.6 Firmware Update

We believe that for the sake of reproducibility of results, predictivity of the device, and avail-
ability in critical situations, devices should never autonomously and unannounced run a soft-
ware update on their own. We also believe devices should never “callhome” on their own. The
ways of searching for a new firmware image and its instsallation are presented below.

The embedded microcontroller in the LUCIDAC system runs open sourced firmware avail-
ableathttp://github.com/anabrid. Releases with binary builds ready to be flashed on the
LUCIDAC MCU are provided there. There are different options for identify the most recent
firmware version compatible with the available LUCIDAC hardware. It is sufficient to execute
only one of these steps:

+ Aclient code such as lucigo can be used to check and install firmware updates appropri-
ate for the connected LUCIDAC. With lucigo this can be done with the command

$> lucigo firmware-upgrade .

36

http://github.com/anabrid

« Youcanalsovisithttp://anabrid.com/product-identification orscanthe QR code
on the LUCIDAC back plate in order to visit a website which points you to the most recent
firmware version which is compatible with your device along with a guide for the update
procedure.

In general, itis recommended to update LUCIDAC regularly to profit from bug fixes, stability im-
provements and new features. Follow the product identification link provided above in order

to register for notifications on new releases.

4.6.1 Manual flashing the MCU

The Teensy MCU cannot be bricked since it has an external bootloader. It is also impossible
to lock yourself out of the devicen since the serial connection using the USB port always al-
lows administrator access to the device. If something goes wrong, there is always the op-
tion of reflashing the MCU by connecting it via USB and executing the $> teensy_loader_cli
with appropriate options. For further details and update instructions on the MCU please visit
https://www.pjrc.com/teensy/ or see Section 5 on embedded programming.

4.7 Physical maintenance

Technically, the LUCIDAC device needs no regular maintenance (see page 54). The device itself
is fully enclosed (it does not need external airflow). Opening the device is not part of regular
usage and must not be done by untrained personnel. Opening the device without proper ESD
protection and gloves can and will damage the hardware!

Although it is easy to open the device by removing the screws holding the front panel in
place (theinternals can be pulled out on arail), opening the device will invalidate any warranty

claims.

4.8 Testing and calibration

The LUCIDAC device performs self-tests and calibration routines autonomously. This is part of
the firmware and happens internally, without user interaction at various times, for instance
during startup and before running a computation. Note that it is not necessary for the user to
calibrate LUCIDAC computing elements. The device comes fully calibrated from the manufac-
turer. In contrast, certain firmware versions might offer ways to invoke the auto-calibration in

37

http://anabrid.com/product-identification
https://www.pjrc.com/teensy/

order to achieve accuracy goals. In case of self-test or calibration failures, the device will report
these with signalling LEDs and entries in the system log.

In addition to the integrated self-tests, thereis a class of test available in various codes. First
of all, the firmware repository contains hundreds of platformio tests. These are basically stand-
alone little firmware images testing particular subsystems of LUCIDAC. At the time of this writ-
ing the complete test suite contains over 400 individual tests, c.f. $> pio test --list-tests .
Running these tests requires an USB connection between host and LUCIDAC. Please refer to
the firmware documentation for interpretation of test results and for suggestions of suitable
tests in the event of suspected malfunction of the device.

Also, each client code is also equipped with a test suite which typically invokes hardware
and integration tests. Client driven tests do not require firmware modifications/flashing and
thus can be executed any timein order to verify the functionality of the distributed client/server
system. For instance, the lucipy code ships with a few dozen tests which can be invoked with

$> make test LUCIDAC_ENDPOINT=... . Please refer to the lucipy documentation for further in-
structions.

38

Section 5

Embedded programming

Embedded programming means writing code which runs directly on the MCU of the LUCIDAC.
The main reason to do this instead of host based programming is to make use of the real-time
capabilities of the MCU, thus allowing the implementation of low-latency analog-digital hybrid
algorithms with the following advantages:

1. Saving ethernet or USB latency, which is typically of the order of a few Milliseconds per
roundtrip time. This clearly dominates short analog computations which only take a few
microseconds to complete.

2. Saving protocol overhead (de-/serialization resources on the MCU). This dominates the
digital compute time required for applying circuit configurations.

3. Fine-grained access to the underlying hardware allows advanced techniques inacces-
sible to the API exposed over the protocol. For instance, custom data acquisition and
online postprocessing of data can be done right on the MCU while results can be fed
back into the analog circuitry directly.

Additions or changes in the digital communication with respect to the IP networking stack
(such as new TCP servers speaking for instance MQTT), protocol extensions to the existing pro-
tocol, as well as low-level digital general purpose I/0 on the front panel (speaking for instance
SPI to another external device) always require modifications in the firmware.

39

Digital ground GND W1 2 GND
Supply voltage VCL+3.3V @3) 4 l vcc +5V Supply voltage
External halt request [/EXTHALT M(5) (6)f /ovL Overload indicator
IC/OP control line | /MODEIC @ /MODEOP ~ IC/OP control line
o7 §(9) aoff pe
reserved @17 (ABBREID Bus
D28 QM3 (ABBRAMD address
Bidirectional 013 M15 (ABDRZID lines
bus data lines D12 47 ADDR2 1
D11 |19 20)f ABDRIID
Lines for LUCIDAC- ('SYNCZID) Q1) ADDRO
group synchronization [SYNC_CLK @ 24 B GND
GND §25 26 @ GND
SPI Bus MISO MOSI SPI Bus
SPI Bus MSEL) @9 GO)ff (SPICLK) SPI Bus
GND GND
GND GND

Figure 5.1: Front panel pinout (rotated view from front)

5.1 Front panel digital connector

Thereis atwo pin header on the lower left of the front panel (figure 5.1). In regular use, this port
is currently used for inter-LUCIDAC coupling (master/minion mode, cf section 2.5). The front
panel digital connector can only controlled by means of custom firmware code, for instance
with a compile time plugin.

Several pins are reserved for future applications. The bidirectional data lines can be used
to control external equipment while the six address lines are generated by the built-in control
module. They also control the SPI bus. The four IC/OP/OVL/HALT lines are also available on
MCX ports. These are primarily used as oscilloscope trigger signals but can in principle also be
used for controlling other devices (including LUCIDACs).

Care should be taken when connecting external hardware so as not to damage
the system. Digital logic levels are 0 Vand 3.3 V.

40

Host Operating System Regular
Platform Host programming language runtime Computer

"client"
10 SDK LUCIDAC Client libraries MDNS client

host transparency

- JSONL TCP/IP service MDNS Server
PIO Test JSONL Protocol Registry
suite LUCIDAC

LUCIDAC Platform Library (based on Arduino/Teensyduino) "server”

Devicetree (entities) FSMs (FlexIO) DAQ & Run Managament -

LUCIDAC Hardware Abstraction Layer

Figure 5.2: LUCIDAC tech stack diagram with focus on communication

discovery
broadcast

same | IP network

5.2 Software architecture and communication interface

The LUCIDAC firmwareis open-sourced athttps://github.com/anabrid/lucidac-firmware.
The code is modular/extensible and documented. The documentation is linked in the Github
repository. The firmware code is based on Arduino and on the PlatformIO build system (in short
PIO, see https://platformio.org). Please refer to the firmware documentation for getting
started with PlatformlO.

Figure 5.2 shows the full digital interface to the LUCIDAC in a layer/tech stack diagram. The
individual layers are explained from bottom to top:

1. On the lowest level, the firmware libraries provide a hardware abstraction layer to com-
municate with the various integrated circuits, their data models, and programming func-
tionality.

2. Onthenext layer, the firmware exposes the platform library which collects business logic
thatimplements the blocks as well as administrative infrastructure for hierarchical hard-
ware management, various finite state machines (FSMs), data acquisition, run manage-
ment, etc.

https://github.com/anabrid/lucidac-firmware
https://platformio.org

3. The low level firmware functionality can be accessed as a library “toolbox” where vari-
ous functions can be used. This allows writing both the main firmware, custom plugins
by the user as well as isolated stand-alone tests of particular parts of the software and
hardware using the PlatformlO test system.

4. The Remote Procedure Call (RPC) system is based on a JSON protocol registry, which is
accessible independently from the transport layer above.

5. Communication takes place either by means of the Arduino USB Serial terminal or the
lightweight IP stack (QNEthernet lwIP).

6. The firmware exposes a number of TCP/IP services, such as the JSONL “native” main
server or the QNEthernet-integrated MDNS service announcement.

7. At the ethernet client (or USB host) side, various client codes decode the communica-
tion, eventually communicating with the host side and application codes.

5.3 System states

The following list provides an overview information about the different states hold by the dig-
ital part within the LUCIDAC system. First of all, we differentiate between volatile state (re-
set at power cycle) and persistent, non-volatile state (stored in EEPROMs/Flash memories and
re-read at startup). The following data are non-volatile: Firmware image, networking config-
uration/user settings, vendor identification information and finally entity data which can be
calibration information. Even a reboot of the machine won’t reset the non-volatile informa-
tion.

The following data are volatile: In general, all analog parts (in particular the reconfigurable
interconnection matrix, potentiometer values, initial conditions, overload states), the oper-
ating states (IC/OP/HALT state machines), the dynamical runtime ethernet configuration (i.e.
DHCP, locking), various software-only subsystem states (such as plugin loaders or ongoing
firmware upgrades).

Typically, each subsystem holding volatile information has a reset function on its own.
However, a power cycle of the whole system or reboot of the microcontroller will also reset
all volatile system states. For further information, please consult the firmware manual.

4

5.4 Writing a compile time plugin

Thefirmware is organized as a library “toolbox” exposing several functions. The classical entry
point at src/hybrid_controller.cpp boils down to the two classical Arduino functions as
shown in the following pseudocode:

#include "lucidac-firmware-libraries.h”

void setup() {
setup_firmware();
// This is where your startup code can be placed, which is executed once
// at startup.

}

void loop() {
loop_firmware_services();

// This is where any code can be placed which will be executed regularly,
// for instance event loops, services, etc.

Typically this or similar patterns are referred to as compile time plugins. Rudimentary sup-
port for runtime plugins, which can load and execute machine code at runtime is provided
by the firmware. This is will provide a technological demonstrator basis for tightly-coupled
co-processor style hybrid computing. (This is where anabrid is heading towards. For further
details, please refer to the firmware documentation.)

5.5 Extending the existing network protocol

The LUCIDAC TCP/IP network model is a JSONL-based command-reply protocol and a simple
implementation of a remote procedure call (RPC) scheme. In order to extend the protocol with
new calls, some experience with C++is required. What follows is a demonstration listing which
allows to start and stop a front panel LED animation running independently in the main loop:

#include "lucidac/lucidac.h”
#include "protocol/handler.h”

bool running = false;
int i = 0;

struct MyCustomHandler : public msg::handlers::MessageHandler {
int handle(JsonObjectConst msg_in, JsonObject &msg_out) override {
LOG_ALWAYS("My._new_request_is_being_called");
running = msg_in["running”];

43

I3

void setup() {
/] ...
LOG_ALWAYS("Registering_my_request_handler...");
msg: :handlers: :Registry::get().set("my_request”, new MyCustomHandler());

}
void loop() {
/] ...
auto& lucidac = platform::LUCIDAC::get();
lucidac.front_panel->leds.set(i, true);
i = (i+1)%8; // advance
}

From lucipy, invoking this request is as simple as a plain query, for instance in this interactive
application:

from lucipy import LUCIDAC

hc = LUCIDAC()

while True:
Wait for user input on command line
input("Press_enter_to_start_animation_or_CTRL+C_to._stop_program")

Turn on the LED animation
hc.query("my_request”, {"running”: True 3})

Wait for user input on command line
input("Press_enter_to_stop.__animation_or_CTRL+C_to_stop_program”)

Turn off the LED animation
hc.query("my_request”, {"running”: False 3})

a4

Section 6

Troubleshooting

This section shows some typical problems which could appear and approaches to solve them.
If you have fundamental problems with the device which you cannot solve by yourself, please
do not hesitate to send a mail to support@anabrid.com.

6.1 Basic connectivity and startup

System remains dead at startup Check if the Power LED at the front panel is on. If it is not,
check the power supply and the position of the power switch on the front panel. After
power on, some of the IC/OP/OL/... LEDs should also light up, at least briefly. If this does
not happen, your MCU or firmware may be corrupted. All eight status LEDs should be lit
within three seconds of powering on. If this does not happen, the fundamental LUCIDAC
self-check hardware detection has failed. If the eight LEDs do not turn off again, the
firmware has got stuck in the networking setup (waiting for an address, etc.)

System cannot be found in the network Make sure the LEDs on the RJ45 network connector
atthe back of the device are lit, indicating a physical connection. Make sure the system is
properly turned on and all LEDs are off after final startup (wait at least 10 to 20 seconds).
If possible, check the log of your local DHCP server for an entry containing the hostname
“lucidac”. Otherwise, make use of a IP network scanner. There are various ones available
for all kind of operating systems, even mobile phones. On linux and Mac, you can use the
classicalhttps://nmap.org/ and scan for the typical LUCIDAC TCP port 5024:

45

mailto:support@anabrid.com
https://nmap.org/

shell@client $> nmap -p 5024 192.168.1.0/24 -oG - | grep open

Inthis snippet, insertyour local IP network instead of 192.168. 1. 0. Ifthis does not work,
connect to the USB terminal and check the output for the allocated IP address, which is
shown there. This also works with the client codes itself. For instance lucigo detect
(see section 4 about lucigo) will list USB devices. Lucipy, too, can do this, please refer to
the lucipy documentation for further information.

Cannot connect over USB First of all, make sure the USB connection is working. Use only
the enclosed USB-A to C cable, which is certified for USB2. In particular, do not use a
USB C-to-C cable, because we experienced issues with such cables. Note that LUCIDAC
does not support USB-C Power Delivery. Power to LUCIDAC is provided by the enclosed
power supply unit. If you connect LUCIDAC via USB and forget to connect the LUCIDAC
to its power supply, the device won’t even power up.

Check your USB hub structure. Try connecting the LUCIDAC to other USB hubs or ports
on your computer. Make sure the device shows up in your operating system. USB rec-
ognizes devices, amongst others, by their vendor ID, product ID and their serial number.
These are written on the device back plate. Various operating systems support listing
the connected devices (“Device Manager” on Microsoft Windows, “System Information
app” in Mac OS X Utilities folder, 1susb on Linux). Make sure the device shows up there.

USB Serial Terminal doesn’t work On Linux, you need to install the udev rules for making
sure the virtual serial terminal is registered by the kernel. You find these at https://
www.pjrc.com/teensy/00-teensy.rules including the installation guide. Also make
sure the access rights of the corresponding device file allow your standard user to con-
nect to the USB serial terminal.

In principle, you can use any serial terminal client, such as GNU screen, PlatformlIO (pio
device manager) or even the Arduino IDE-integrated terminal program. The terminal
speaks the JSONL protocol. That is, you should be able to type in the line

{"type":"sys_log"}

(don’t forget to press enter/newline) and get some output. Note that all connection de-
tails (such as baud rate, stop bit, etc) for the virtual serial terminal (also referred to as

46

https://www.pjrc.com/teensy/00-teensy.rules
https://www.pjrc.com/teensy/00-teensy.rules

COM port on Windows) are completely ignored in the teensy ecosystem. Typically, the
terminal “just works” at full USB2 speed.

Flashing the firmware doesn’t work Normally you should just use the self-contained update

procedure provided by the firmware itself. However, if you want to flash the firmware
explicitly, for instance because you are developing a modified firmware, the following
tips might come in handy:

It is a well-known phenomenon that, depending on the operating system and cables
used, sometimes the firmware flasher has to be invoked several times. If the

$> teensy_loader_cli does notwork well for you, you might also wantto try outhttps:
//koromix.dev/tytools. See also https://www.pjrc.com/teensy/check_halfkay.
html for the Teensy bootloader.

In rare cases, flashing the firmware only works when pressing the button located on the
teensy MCU. Since this button is not accessible from the outside, the system must be
opened to get access. Please contact anabrid in such a case.

6.2 Analog programming problems

I can’t find a summing element in LUCIDAC programming: The computer performs an im-

plicit sum in the I-block. Accordingly, there are no summers available as explicit com-
puting elements.

System does not compute what was expected: If using lucipy, you might consider to cross-

a7

check your circuit configuration using the simulator included in lucipy. This can be as
easy as changing the LUCIDAC endpoint to the integrated Emulator, which has the “vir-
tual” endpoint emu: //. Please refer to the lucipy documentation for further details.

In general note that analog computing is by definition low precision computing. In par-
ticular when dealing with highly unstable systems, there can be differences between an
idealized simulation and a real analog computation. If you want to dig deeper into these
differences, you might want to consider realistic simulations, taking into account trans-
fer functions which model, forinstance, the finite bandwidth of the computing elements.

Furthermore, keep in mind that analog computing requires all values to be within a finite
domain (the machine unit domain), typically [—1, +1]. This system property is called

https://koromix.dev/tytools
https://koromix.dev/tytools
https://www.pjrc.com/teensy/check_halfkay.html
https://www.pjrc.com/teensy/check_halfkay.html

BIBO (bounded-in, bounded-out) and cannot be violated. Proper scaling of the math-
ematical equations is required before mapping them onto any analog computer. For
more information on how to scale a system of coupled differential equations, see the
primers such as [ULMANN, 2023].

Missing signals Inorderto see what LUCIDAC is computing, you either have to use theinternal
data acquisition system (DAQ/ADCs) and/or an externally connected oscilloscope. This
requires appropriate configuration of the device.

In lucipy, this is possible with the circuit.probe() and circuit.measure() calls to
register an external probe or an internal data conversion. Please refer to the lucipy doc-
umentation for further details and examples. Consider reading the APl documentation
of the lucipy.circuits package or Circuit class.

Front panel 1/0 not working The eight front panel outputs/inputs are mapped to the last
eight lanes of the 32 UCI matrix lanes. Counting from 0: Front panel infout 0 maps to
lane 24, front panel infout 1 maps to lane 25, ...up to front in/out 7 maps to lane 31.
Keep in mind that these connections are located between the C and | block. Keep also
in mind that for using an input jack, you have to define this as an input, for instance by
connecting the corresponding object in lucipy to a computing element, which internally
triggers an acl_select option:
from lucipy import Circuit
circ = Circuit()
fp3 = circ.front_panel(3) # front panel I/0 3

m = circ.mult() # multiplier o
circ.connect(fp3, m) # this connects front panel input 3 to multiplier @

Caution: The front panel connectors are ESD sensitive. Please make sure no excessive
voltages are applied. Touch any grounded object before making or breaking connec-
tions. Misuse can permanently damage the computing elements, in particular the cor-
responding lanes (coefficients) and cross lanes (outging lanes, SH block, computing el-
ements).

My circuit is too big, | run out of computing elements Keep in mind that analog computing
means that every mathematical operation in a set of equations has to be mapped to a
physical computing element. LUCIDAC provides eight integrators, four multipliers, 32
coefficients, and a variable number of implicit summers. The interconnect circuits also
imposes some limitations onto a configuration (see section 2 for details). If your circuit is

48

too big (for instance, it requires too many connections), a single LUCIDAC won’t be able
to solve it. Maybe the circuit can be simplified.

6.3 Frequently asked questions (FAQ)

How to power off the system? Just turn the system off using the power switch at the front
panel. This should not be done while writing permanent settings (see Section 4.2) to the
flash, which could corrupt the system state.

How to use the system with multiple persons the same time? LUCIDAC allows multiple
clients to connect over the network at the same time. This can easily result in prob-
lems if two clients want to run different circuits at the same time. Therefore, the device
provides a simple exclusive locking mechanism. For further details, please refer to the
lucipy client or firmware documentation.

How to distinguish multiple devices in the network? LUCIDACs are primarily meant to be
distinguished by their Ethernet MAC address. Itis written on the back plate of the device.
Furthermore, the firmware exposes an identify call which allows the front panel LEDs to
blink and thus identify a particular device. For further details refer to the documentation
of the relevant codes.

How to use my favourite programming language? Client libraries for LUCIDAC are mostly
ordinary TCP/IP network client applications using JSON for encoding data structures. It
is straightforward to write libraries in various programming languages. Clients are al-
ready available for C/C++, Rust, Python, Julia, Go, TypeScript, JavaScript and some of
them are already released on Github. Contact anabrid if you want to make use of these
codes or start a clientin a new programming language. It also might be an option to use
language bindings and foreign function interfaces instead.

Is there a graphical user interface? We have a web browser-based graphical user interface
developed and open-sourced at https://github.com/anabrid/lucigui. In the LUCI-
DAC 1.0.0 firmware, this GUI is not part of the system but will become one in future re-
leases. The GUI simplifies many things such as device configuration/administration, vi-
sual circuit programming, mode steering, and many more. Using the GUI also does not
require the installation of additional software and enables using the LUCIDAC from mo-
bile devices (in particular tablets) as a no-code development platform.

49

https://github.com/anabrid/lucigui

Can | connect peripherals to the LUCIDAC USB port? By default the Teensy MCU within the
LUCIDAC does not operate asa USB host butasa USB device. You can modify the firmware
to have it operate differently and thereby, for instance, connect a USB keyboard or USB
mouse to the LUCIDAC. However, this is beyond the scope of our firmware. Another op-
tion connecting digital peripherals to LUCIDAC is the front facing port, which will require
suitable firmware code to “drive” the custom additions.

Is there some compiler which automates the translation from a differential equation to
the LUCIDAC? Afully-fledged compilerinfrastructureis currently being developed which
maps mathematical expressions to the LUCIDAC topology. We will provide access to this
software as soon as it is ready to use. Users will be able to provide a mathematical sys-
tem in a domain specific language or in their favourite computer algebra system (CAS).
Interoperability with electronics simulators such as LTSpice is also planned.

Can | get access to the LUCIDAC schematics? At the time of this writing only the software is
open sourced. The schematics are not publicly available. Access can be provided after
signing a non-disclosure or license agreement with Anabrid.

50

LUCIDAC was made possible by the amazing discrete electronics engineering team working in
our research lab at the Quantum Computing Initiative (QCI) of the DLR (Deutsches Zentrum fiir

Luft- und Raumfahrt, German Aerospace Agency) in the city of Ulm, Germany.

Section 7

Resources and further reading

This booklet provides only an introduction into the LUCIDAC software and hardware ecosys-
tem. Various resources are available to make your explorations and use of LUCIDAC enjoyable
and rewarding. The following web references will help you stay up-to-date with all things LU-
CIDAC and to get in touch with other members of the analog computing community:

+ Anabrid LUCIDAC landing page: https://anabrid.com/lucidac

« Anabrid LUCIDAC webshop: https://shop.anabrid.com

« Anabrid codes at Github: https://github.com/anabrid

« Introductory analog computing circuit examples at
https://anabrid.com/application-notes and
https://the-analog-thing.org/THAT_First_Steps.pdf

For getting started at analog computing in general, you might want to have a look at the fol-
lowing books and papers:

[ULMANN, 2023] BERND ULMANN, Analog and Hybrid Computer Programming, 2nd edition, De-
Gruyter, 2023

[ULMANN, 2023/2] BERND ULMANN, Analog Computing, 2nd edition, DeGruyter, 2023

[KOPPEL et al, 2021] SVEN KOPPEL, BERND ULMANN, LARS HEIMANN, DIRK KILLAT, Using ana-
log computers in today’s largest computational challenges, doi:10.5194/ars-19-105-2021
[arxiv:2102.07268]

52

https://anabrid.com/lucidac
https://shop.anabrid.com
https://github.com/anabrid
https://anabrid.com/application-notes
https://the-analog-thing.org/THAT_First_Steps.pdf
https://doi.org/10.5194/ars-19-105-2021
https://arxiv.org/abs/2102.07268

EU-Konformitatserklarung

geman der Richtlinie 2011/65/EU (RoHS) vom 8.07.2011

Hersteller/Bevollméachtigter 1):

anabrid GmbH

Am Stadtpark 3

D-12167 Berlin

E-Mail.: office@anabrid.com

Nr: AN-4-170000-194873

Die alleinige Verantwortung fir die Ausstellung dieser Konformitatserklarung tragt
der Hersteller (bzw. Installationsbetrieb): anabrid GmbH

Gegenstand der Erklarung: LUCIDAC - digital programmierbarer Analogcomputer

Der oben beschriebene Gegenstand der Erklarung erfillt die Vorschriften der

Richtlinie 2011/65/EU des Europaischen Parlaments und des Rates vom 8. Juni 2011

zur Beschréankung der Verwendung bestimmter gefahrlicher Stoffe in Elektro- und
Elektronikgeraten.

Angewandte harmonisierte Normen insbesondere:

Angewandte sonstige technische Normen und Spezifikationen:

Unterzeichnet fiir und im Namen von: anabrid GmbH

Ort/Datum der Ausstellung: Berlin / 27.09.2024

Angabe zur Person des Unterzeichners:

't'
k. anabrid Gm\?‘_!
am Stadipark =
42167 Berlin

www.anabr'\d,mfn

1) ,.Bevollmachtigter* ist jede in der Union ansassige natiirliche oder juristische Person, die von einem Hersteller
schriftlich beauftragt wurde, in seinem Namen bestimmte Aufgaben wahrzunehmen;

"9DIAJSS JBWOISND 30BJUOD
10 8}Isgam pligeuy ay3 uo suisy >ucmtm\>

1InJ @Y1 03 Jajau asea|d ‘s|ieap alowl Jo4
onpoud

Y3 asn 03 Ayljigeul Jo asn sy} woly Suisue
saSewep [e)UaNbasuod IO ‘|eIuapIdUl }alIpul
Aue Joj s|gel| 8q pligeuy |[eys saouejswnoln
ou Japun 3onpold aA13D8)9p 8y} Jo Jledals Jo
Juswade|dal ayy 03 paywil| st Ajljigel| splgeuy

ALITIAVIT 40 NOILVLINIT

‘poad Ajueliem ayy ulypIm

sjyuswade|dal Jo siedal 4oy $3502 Suiddiys
S19A0D pliqeuy papiroid aq ||im Juswade|dal
10 Jledal e ‘PaWILUOD S| 199)9p a3 4| 7
‘uoipadsul 1oy 3onpold ayy Suluinial Joy
SUOIIDNIISUI BAISDAY ||IM NOA ‘|eacsdde uodn T
'anss| 8y} Jo uonduosap pajielap e

pue aseyaind 4o joold ypIm wodpLgeue®olay
Je 3joddns JaWo3sNd pLgeuy 30eu0D 0

S$S300¥d WIVID ALNVHIYMN

's95.Nns Jamod Jo Ajipruny

‘Jeay SAISSIOXS SE YONS S1030e) [EJUSWUOIIAUS
wouy Supinsal aSewe((g) ‘syuspiode

10 ‘95ewep 21}aWs0d Uea) pue Jeam [euwlIoN
() 'suonedyIpow pazuoyjneun Jo ‘asnsiw
‘uopje||esul sodoidw Ag pasned aSewe(()
:JaA0D JOU S30p Ajuellem siy|

SNOISN1OX3

281eyd

|euonippe ou e 3onpoid aAlRdajep ay3 sde|dal
10 Jledau Jaylls ||IM plgeuy ‘pouad Ajueliem
3y} Sulnp saslie 129Jap e J| 'SUoiIpuod
921AISS pUe 35N [eWloU Japun diysueuwsiom
pue s|eLsjew Ul $30949p SI9A0D Ajuellem ay|

JOVHINOD

"aseyound Jo a3ep ay} wouy Sunels
10ss9201d-02 DYdIDNT 943 1o) Ajueliem
1eaA-z piepuels e sapinoid HQWIO plgeuy

AOIY3d ALNVIYYM
(ALNVHYVMN ¥VIAZ QUVANVLS)
NOILYWYOANI ALNVIYVYM D XIANIddV

‘(Ayueliem JeahA-g
pJepuels) uonewlou| Ajueliem D xipuaddy

"3sanbau uodn siseq YN uo 1o Suisuadl|

104 3|qe|leAy) dEWAYDS |ed11323F g Xipuaddy
‘(3uawnoop

Ul IX93 ulew 9aS) weiSelq »20o|g 1y Xipuaddy

S3D1AN3ddV

'saijl|1oey

a1endoidde 1e ps|pAdal 8g pINoys sgdd pue
SISSeyd wnujwnie ay} se yans syusuodwod
'suole|NSal Sul|DAdaI SOIUOIDS|S [BD0)

U3Im aouepiodde ul DydIDN1 843 Jo asodsig

ONITOAD3Y ANV 1VSOdSIa L

JB3M 10} SUOIIDBUUOD 18UlaYlg pue sa|qed
Jamod 3oadsu| Ajijeuondouny waysAs uadoid
ainsus O3 sg37 sn3eis ay3 234D ATHLNOW

JONVNILNIVIN INILNOY T9
IONVNILNIVIN 9

19205 ||lem ay3 wody Alddns sjamod ay3
J22uu0dsIg (Z) "92e4ajul 91empos ay3 ysnoiyy
suoipendwod Sujuund ||e ajeulwual Aja4es (1)

ANAID0Ud NNOALNHS €S

‘uopendwod

Sojeue UNoA unu pue syuswsa|d Suindwod
Sojeue ain5yuod 03 alemyos ayy asn € daxs
‘uoyjAd uo

Jua||D> pLgeuyAd ay3 Suisn IO adejlajul paseq
-gom S31 YSnouyy 921A8p a3 SS90y g dais
'9|qed Jamod ay3

Sugoauuod Aq DVYJIDNT 8Y3 Uo Jamod i dais
3JNAID0Ud ONILVYIJO TS

‘U0I30938P PROIIBAQ/JO/ DI 4104 SINdINo 4as51]
'SN3e3s WaysAs Suimoys

'Sd37 9|qeinSyuo2-1asn g sJojedlpul d37
"Juol} 8Y} 3 Paled0T WoyNg JSMod
MBINIBAQ [dUBd [0]3U0D T'G

NOILVY3dO 'S

“J9[3N0 [BDLID3]S B3 O}
3 5UD3UUOD AQ 9DIASP 3Y) UO Jamod G dais
‘BUIyse)} SIeMULIY pUB $S82D€ 3|OSUOD

10} 9|9ed D-gSN 943 29UU0D ‘papaau 4| i dais
" 90eIdUl JBUIBYI] D3s/HGINOOT

© 535N 9DIASP 3| H4OMIau INOA 0} DyAIDN
3y 129UU0D 0 3|ged Jaulaylg ay3 asn € dais
10323UU02 e[[alieq ayy

03 Aiddns uamod papiroid sy 308uu0) ;g deas

‘90ejns s|gels
Je|y e Uo JUN DYAIDNT By} deld T deas

Sd31S NOILVTIVLSNI €1

‘(papnoul Jaydepe) D At 03 PalJaAUOD

"DV AOZT/OFZ PAEpUE)S SjUSWaIINbaY Jamod
‘uone|iuUaA

Jadoud Joj sspis ||e uo wd QT JO sdueles|d
wnwiuiw e ainsuj syuswalinbay soeds

SINIWIHINOIY ALIS TV

‘(2|9ed 9j0Suod

D-gSN '9|ged 39uUldylg Ghry "5'9) saLossadoe
SulAuedwodoe pue Aiddns Jamod Jun ulew
2VAIDNT 2y} sepnjoul a5edoed ayy ainsug ,
‘a5ewep Aue 1oy

SuiSeyoed 30adsul ‘@diA9p a3 SulAledas uodn

SNOILONYLSNI ONDIDVANN TV
NOILVIIVLSNI ¥

'3dL 1ess 0Tz Aojle

DUIZ S19UI0D 3sed-aIp ‘G0 IS SN |V S9|y0ld
(Aueuwiieo ‘Hawo v1dog Aqg Suisnoy
0ZSEOT LI) sisseyd wnuiwin|y [eusjein Apog

SONILVOD ANV SIVI¥ILVIN T°€

B €7 JySam

‘WW 8T X /GE X 66 YS9 pue suoisuswig
SnIs|9D .06 :Aunjesadws) SunessdQ xepy
edy OE0T BInssald SunessdO xepy

VT Az DA ‘Alddng Jamod

JONVINYOLH3d TE
SNOILYDI4ID3dS TVOINHDIL €

‘Poue)s|sse

|esIpaw 39as pue Ajgelpawwl Jamod
3D3UUODSIP ‘$INJ20 Y20Ys [B2132318 4| PIY ISl
's9|gqed

||e 308uUU0dsIq ‘[2ued Juoly 8Y3 UC Pa3eIO|
yopms Jamod ayy ssald :doiys AdusSiawg

S3ANAIDO0Ud ADNIDYINW3 v’

'90B4INS 3|qelS
e pue uone|RusA Jadoid Yim JUSWUOIIAUS

ue ul a1Aep ay3 a3elado AluO NOILNYD
"J0BIUOD [edLYD3le Juanald

03 Suisnoy papiroid ayy asn sAem|y ONINYVN

“UOI}B|[BISUI 21049F PI3O3ULODSIP
ale s92Un0s Jamod [|e Jey3 ainsug HYIONVA

SNOILNVYDO3dd AL34VS €T

a|ge|iene gonys Jomod Adussisw3 :dois [@)
25e3/0A YBIH Bululem Kig

STOAWAS AL3dVS ¢

‘Aanful

9)eJapOoW IO Joulw ul }nsal Aely INOILNVD
‘Yyeap Jo Aunful

SNOWSS Ul 3NsaJ P|NOd 18y piezeH HNINYVM
‘yeap 4o AUnful snopias

urynsal ||im 3eyy plezey sieipsuil] {yIDONVA

‘SAQYOM TVYNOIS AL34VS TC

‘suolnensal

Aya4es yum aoueldwod ainsus 0} uonesado
pue uonie||eisul a10yaq AjlySnolioyy suoidnIsul
||e peay ‘Suijjewloy aSessaw Ajajes

10} 9'GEGZ ISNV Yaim saljdwod [enuew siy |

NOILVNYO4LNI AL34VS TVIINID T¢C
SNOILONYLSNI AL3JVS T

"9SNSIW PaISPISUOD
S| (suonnedaud Ayajes sjeldoidde Jnoypum

1o suoned|dde |eLjsnpul-uou ul “5) 9dods
papusjul 8y puoAaq asn Auy ‘swsipeled
Sunpndwod [euonuaAuoduUN Sullojdxs

pue ‘Su@auiSua pue soisAyd ui suoie|nwiis
Sujuunl ‘suoenba [erualaylip xa|dwod SulAjos
10} papualul sI 3| 10ssa20.d-0D Jandwod
Sojeue a|geinsyuodal Ajny e st DyaidN1 ayL

3SN 3AN3LNI €T

20T ‘€T 3daS Aepl4 :@3eq Sulnoejnuepy
3DIASP 0} PAYDLRY UaquInN [enas
0T OvaioN1 JequinN [9poN

NOILVDI4ILN3dI 1ONA0¥d T

wo>pugeue®o|ay :|lejn-3

‘0ZLy0E6Z90EY+ BUOYd “UOHeULIOJU| 1583U0D
Auewan

‘ulueg /91T € Hedipels wy ssalppy

Hqwo pugeuy dweN Auedwo)

NOILVINYOLNI
1OVINOD ANV 434NLOVANNVIA T

ALITIGVIT ALNVYYVM ‘SNOILONYLSNI ALIJIVS “UIANWIVIOSIA TVDOIT dVaAIdNT

	
	Introduction and Getting started
	Requirements
	What is in the box
	First time hardware setup
	Device connectivity
	The LUCIDAC co-processor design
	Installing the lucipy reference code

	LUCIDAC architecture
	Interconnection network
	LUCIDAC Blocks
	Math blocks
	Circuit Configuration
	Coupling multiple LUCIDACs together
	Coupling THAT with LUCIDAC

	Example applications
	Lorenz attractor
	Rössler attractor
	Hindmarsh Rose Neuronal Bursting
	Van der Pol oscillator

	Device administration and maintenance
	The Lucigo administrative code
	Permanent settings and network configuration
	Access control
	Device identification
	System logs and usage metrics
	Firmware Update
	Physical maintenance
	Testing and calibration

	Embedded programming
	Front panel digital connector
	Software architecture and communication interface
	System states
	Writing a compile time plugin
	Extending the existing network protocol

	Troubleshooting
	Basic connectivity and startup
	Analog programming problems
	Frequently asked questions (FAQ)

	Resources and further reading
	 Legal documents
	European Union CE/RoHS Conformity Declaration
	Safety Instructions, Maintenance, Warranty and Liability

